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The Human Connectome Project consortium led by Washington University, University of Minnesota, and
Oxford University is undertaking a systematic effort to map macroscopic human brain circuits and their
relationship to behavior in a large population of healthy adults. This overview article focuses on progress
made during the first half of the 5-year project in refining the methods for data acquisition and analysis.
Preliminary analyses based on a finalized set of acquisition and preprocessing protocols demonstrate the
exceptionally high quality of the data from each modality. The first quarterly release of imaging and
behavioral data via the ConnectomeDB database demonstrates the commitment to making HCP datasets free-
ly accessible. Altogether, the progress to date provides grounds for optimism that the HCP datasets and asso-
ciated methods and software will become increasingly valuable resources for characterizing human brain
connectivity and function, their relationship to behavior, and their heritability and genetic underpinnings.

© 2013 Elsevier Inc. All rights reserved.
Introduction

A revolution in noninvasive neuroimaging methods over the past
two decades has enabled the analysis and visualization of human
brain structure, function, and connectivity in unprecedented detail.
These advances make it feasible to systematically explore the human
connectome, i.e., to generate maps of brain connectivity that are ‘com-
prehensive’ down to the spatial resolution of the imaging methods
available.

In 2009, the NIH Neuroscience Blueprint Institutes and Centers an-
nounced a Request for Applications (RFA) targeted at characterizing
the human connectome and its variability using cutting-edge neuroim-
aging methods. The RFA sought applications that addressed the dual
objectives of accelerating advances in key technologies and applying
these advances to a large population of healthy adults. In 2010, NIH
awarded Human Connectome Project (HCP) grants to two consortia,
one led by Washington University, the University of Minnesota, and
Oxford University (the “WU-Minn” HCP consortium), and the other
led by MGH and UCLA (the MGH-UCLA HCP consortium) (see http://
www.neuroscienceblueprint.nih.gov/connectome/).

After summarizing the key objectives of the WU-Minn HCP consor-
tium, this article provides an overview of results from our extensive
efforts to refine and optimize the many methods used for data
).
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acquisition and analysis. MRI data acquisition protocols for scanning
at 3 T were finalized1 in August, 2012, and are now being used to ac-
quire high-quality data from many subjects. In this article we highlight
keymethodological advances and summarize how these large and com-
plex imaging and behavioral datasets are being acquired, processed,
and shared. This sharing includes the release in March 2013 of data
from 68 subjects scanned during the first quarter (Q1) of Phase II data
collection. This dataset includes unprocessed and ‘minimally
preprocessed’ data on all subjects, plus more extensively analyzed
group-average data for several modalities.

Additional articles in this special issue go into greater detail in
these specific areas and provide a wealth of information about our
instrumentation and image acquisition methods (Ugurbil et al.,
2013); preprocessing pipelines (Glasser et al., 2013b); diffusion imaging
(Sotiropoulos et al., 2013c); resting-state fMRI (Smith et al., 2013);
task-fMRI and behavior (Barch et al., 2013); MEG (Larson-Prior et al.,
2013); and informatics and quality control processes (Marcus et al.,
2013). Other special issue articles describe progress by the MGH-UCLA
HCP consortium.
1 TheWU-Minn consortium will also acquire MRI data at 7 T, using methods that are
still under development (Ugurbil et al, 2013). The MEG protocol has recently been fi-
nalized and data acquisition is scheduled to begin in May, 2013 (Larson-Prior et al.,
2013).
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HCP objectives

The WU-Minn HCP consortium aims to characterize human brain
connectivity and function in a population of 1200 healthy adults and
to enable detailed comparisons between brain circuits, behavior, and
genetics at the level of individual subjects. Here, we summarize the
overarching objectives and data acquisition plans of the HCP, which
have not changed substantially since they were initially reported (Van
Essen et al., 2012a).

Subjects

HCP subjects are drawn from a population of adult twins and their
non-twin siblings, in the age range of 22–35 years. Studying sibships
that include twins offers multiple advantages. Most obviously, it en-
ables a systematic assessment of the heritability of neural circuits.
Monozygotic (MZ) twins should have the greatest similarity because
they are genetically nearly identical. Dizygotic (DZ) twins are no more
related genetically than ordinary full siblings, but they share childhood
environment, including in utero environment, to a greater degree.
Combined analyses of MZ and DZ pairs will allow estimation of the
extent to which genotype, shared environment, and non-shared
influences each contribute to variation in traits. Including additional
(non-twin) siblings provides a further increase in statistical power for
analyzing heritability, distinguishing between genetic and environmen-
tal influences (Posthuma and Boomsma, 2000; Van Essen et al., 2012a)
and relating genotype to phenotype.

Many aspects of brain circuitry and its relation to behavior are
likely to involve small contributions from many genes, rather than
dominant contributions from one or a few genes. Consequently, a
large number of subjects will be needed in order to identify relation-
ships between brain circuit phenotype and genotype. For practical
reasons, our target number for the HCP is limited to 1200 subjects.
This target reflects not only budget considerations but also logistical
constraints associated with the number of scans feasible to carry out
in a three-year period on a single dedicated 3 Tesla (3 T) scanner
(see below). While 1200 subjects is small relative to many GWAS
studies, the statistical power gained by studying twins and their
siblings should nonetheless enable valuable exploratory genome-
wide analyses of how specific genes, interacting genes, and genetic
regulatory sequences may influence brain connectivity.

Imaging data

MR scanning includes four imaging modalities, acquired at resolu-
tions that are notably high for a large-scale in vivo study: structural
MRI, resting-state fMRI (rfMRI), task fMRI (tfMRI), and diffusion MRI
(dMRI). All 1200 subjects will be scanned using all four of these modal-
ities on a customized 3 T scanner at Washington University (WashU).
Two hundred of the same subjects will also be scanned on a 7 T scanner
at the University of Minnesota (UMinn), using the same four imaging
modalities. A subset of 100 subjects will be studied using combined
MEG/EEG (resting-state and task-evoked) carried out at St. Louis
University (SLU).

Behavior

On the behavioral front, our objective is to capture a large
amount of information about each subject across many behavioral
domains, especially for measures that have the potential to covary
in interesting ways (across subjects) with brain connectivity and
function. A secondary objective is to use standardized behavioral
tests as much as is feasible, to increase the prospects that findings
based on the HCP data can in the future be related to other large-
scale projects comparing brain and behavior.
Genetic data

Genetic analyses will be based on DNA extracted from blood
samples acquired at the time of each subject's visit. Genotyping
will be carried out in the final year of the project, for reasons of
consistency (using a single platform), and also to obtain the greatest
amount of data, given anticipated declines in price per sample.

Data sharing

The HCP is committed to making imaging and behavioral data
freely available to the scientific community. Importantly, this
includes not just the unprocessed (‘raw’) imaging data, but also
data after the multiple levels of processing needed to analyze and
interpret the data, e.g., to obtain maps of structural and functional
connectivity at different spatial granularity. A second objective is
to make the data available as soon as is feasible, via quarterly
releases that allow time for data processing and quality control. A
third objective is to enable flexible and powerful data mining via
a user-friendly database and visualization platform. Family struc-
ture and other data will be handled by a restricted access data
sharing process that imposes important constraints on what and
how certain sensitive types of information can be shared and pub-
lished (see below).

HCP progress

Here, we summarize progress since funding of the WU-Minn HCP
consortium began (September, 2010), beginning with a brief summary
of seven broad domains.

• Subject recruitment, visits, and behavioral testing. Many practical
issues have been resolved to allow recruitment and visits to occur
at a pace sufficient to study 1200 subjects over 3 years at a single
imaging site, as discussed below.

• 3 T scanning protocol. A two-year effort to develop and refine the
scanning protocols for the 3 T Connectome Scanner has yielded im-
portant advances in each of the four MR-based imaging modalities
(Ugurbil et al., 2013).

• 7 T scanning protocol. An ongoing effort to improve data acquisi-
tion and preprocessing for the 7 T scanner will enable scanning
of the 200 HCP subjects using higher spatial resolution than
attainable on the 3 T Connectome Skyra. Scanning with the final
7 T protocols is scheduled to begin in the fall of 2013 (Ugurbil et
al., 2013).

• Minimal preprocessing pipelines. Numerous innovations and refine-
ments have been made in the many preprocessing steps needed
to correct for spatial distortions, align data across modalities,
and bring data into standard atlas spatial coordinate systems.
These refinements are especially important for capitalizing on
the high spatial resolution of the HCP datasets, but they are also
likely to be of broad utility to other investigators and other
large-scale projects in the neuroimaging community. These
refinements have been consolidated into a set of well-defined
preprocessing pipelines that consistently and reliably carry out
distortion correction and spatial alignment for each of the four
imaging modalities (Glasser et al., 2013b).

• Analysis approaches. Methods for later stages of image processing
have advanced on many fronts and will continue to be refined over
the remainder of the project. Some objectives, such as brain
parcellation, inter-subject registration, and cross-modal comparisons
are not only methodologically challenging, but will rely on extensive
analysis of datasets generated by the HCP for their successful
implementation. Some investigators external to the HCP consortium
will elect to develop and apply their own analysis approaches to the
unprocessed or minimally preprocessed HCP data. We anticipate
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that many others will prefer to take advantage of the optimized
analyses being developed within the HCP and work with HCP data
taken from “further along the analysis chain”, so that they can begin
working with the information level of most convenience to them —

for example, starting with an HCP-derived “parcellated connectome”
network matrix generated for individual subjects (Smith et al.,
2013; Sotiropoulos et al., 2013c).

• MEG. Data acquisition protocols forMEGhave beenfinalized, and scans
are scheduled to commence in May, 2013. Many aspects of data
analysis and cross-modal comparison will continue to be refined
(Larson-Prior et al., 2013).

• Informatics and data sharing. The HCP has implemented two informat-
ics platforms that will serve as workhorses for key aspects of data
storage, access, analysis, and visualization. The ConnectomeDB
database has been established for handling the large amounts of
unprocessed and processed HCP data. The Connectome Workbench
platform provides many novel visualization and analysis capabilities.
Both platforms will continue to evolve and will jointly support an in-
creasingly broad set of data mining capabilities over the next several
years (Marcus et al., 2013).

Subject recruitment, visits, and behavioral testing

Inclusion and exclusion criteria
Our primary participant pool comes from healthy individuals born

in Missouri to families that include twins, based on data from the
Missouri Department of Health and Senior Services Bureau of Vital
Records. Additional recruiting efforts are used to insure that partici-
pants broadly reflect the ethnic and racial composition of the U.S.
population as represented in the 2000 decennial census. We define
‘healthy’ broadly, aiming for a pool that is generally representative
of the population at large, so that we can capture a wide range of
variability in healthy individuals with respect to behavioral, ethnic,
and socioeconomic diversity.We exclude sibshipswith individuals hav-
ing severe neurodevelopmental disorders (e.g., autism), documented
neuropsychiatric disorders (e.g., schizophrenia or depression) or neuro-
logic disorders (e.g., Parkinson's disease).We also exclude individuals
with illnesses such as diabetes or high blood pressure, as these
might negatively impact neuroimaging data quality. Twins born
prior to 34 weeks gestation and non-twins born prior to
37 weeks gestation are excluded, reflecting the higher incidence
of prematurity in twins. We include individuals who are smokers,
are overweight, or have a history of heavy drinking or recreational
drug use without having experienced severe symptoms. This will
facilitate future connectivity studies on psychiatric patients many
of whom smoke, are overweight, or have subclinical substance
use behaviors. Supplemental Table S1 lists all HCP inclusion and
exclusion criteria.

Screening interviews
Initial telephone screening consists of a questionnaire to ascer-

tain whether prospective participants meet the HCP inclusion
criteria. If at least three family members (including one twin pair)
meet the inclusion criteria and express willingness to participate,
each is asked for verbal informed consent and given an extensive
telephone interview, the Semi-Structured Assessment for the Genet-
ics of Alcoholism (SSAGA, Bucholz et al., 1994). This instrument is
used to confirm the absence of significant previously documented
psychiatric illness and to obtain information about subthreshold
psychiatric symptoms. To date, no participants who have passed
the initial telephone screening have been subsequently excluded
during the SSAGA. On average, approximately 6–7 families are
screened in order to identify one family with a twin pair and at
least one other sibling who meet all the inclusion criteria and are
willing to participate. An average of 2.6 subjects per family complet-
ed visits in Q1. To prevent identification of families with unusual
structures, the number of subjects in a family who can be studied
has been set at a maximum of six, and no more than one pair of
twins per family will be studied.
Two-day subject visits
Given the imperative of obtaining consistently high-quality data

from a community population, it is important that the overall experi-
ence be as consistent as possible across participants and that it also be
a positive one, without being unduly burdensome or stressful. Based
on pilot studies, we established a schedule inwhich the standard proce-
dure is for a participant to spend two days atWashU. In addition to the
review and signature of the informed consent document at the begin-
ning of Day 1, scans are also done in a consistent order (unless quality
issues necessitate a rescan; see below). Before undergoing any actual
scans, each participant has a practice session in a mock scanner to
acclimate him or her to the scanner environment. The mock scanner
session includes feedback on head motion following different types of
instructed movements using a target strapped to the forehead, as well
as training to minimize head motion while watching a film, which
cuts off when head motion exceeds specific threshold. Day 1 includes
a structural MRI session followed (after a break) by a session that
includes first a resting-state and then a task-fMRI component. Day 2
includes a diffusion imaging scan followed by a second combined
resting-state and task-fMRI session. The total duration of the standard
four sessions is about 4 h, not counting set-up time. If any scan is judged
unusable (see QC section below), we try to schedule an additional
session during the initial visit or in a follow-up visit in order to reacquire
the unusable scan.

In addition to these scan sessions, participants complete extensive
behavioral assessment outside the scanner, during two sessions lasting
a total of several hours (see Tables 2 and 3 in Barch et al., 2013). One set
of measures, from the NIH Toolbox (http://www.nihtoolbox.org/) is
typically done on visit Day 1, takes about 2 h and includes 19
subdomains within the broad domains of cognitive, emotional, motor,
and sensory functions (see Barch et al., 2013, Table 2). The other session
(~1.5 h duration) of 11 non-Toolbox measures is typically done on Day
2 and includes tests of vision (color vision, contrast sensitivity),
attention, personality, episodic memory, emotion processing, spatial
processing, fluid intelligence, and self-regulation (delay discounting).
A variety of additional tests are used to characterize each participant's
physical and mental state during the visit; see Supplemental Table S2
for a complete list. The order of these evaluations can vary somewhat
within the visit, depending on scheduling considerations. At some
time during the visit, participants are also asked for blood samples
for genetic and other analyses, and for a saliva sample for genetic
analysis if they decline to provide a blood sample. Blood samples
for genetic analysis are shipped to the Rutgers University Cell and
DNA Repository (http://www.rucdr.com) for extraction of DNA and
creation of cell lines.

In general, the participants studied to date (through April,
2013) have tolerated the entire experience very well, including
the extended time in a customized scanner with a reduced bore di-
ameter (see below). The Q1 data release includes data from 76
subjects who visited through November, 2012. Complete or
near-complete scans for all modalities were obtained from 68 of
these subjects (see Supplemental Table S3). Reasons for partial or
complete loss of imaging data include claustrophobia and physical
size (body or head). Subjects who complete only the behavioral
testing remain in the study if they do not meet other exclusion
criteria, because the behavioral data alone may be of interest to
some researchers.

A four-question satisfaction survey administered at the end of
testing shows that participants report a very high level of satisfaction
with their experiences. The majority of participants rate their experi-
ence as a 9 or 10 (out of 10) overall (Supplemental Table S4).

http://www.nihtoolbox.org/
http://www.rucdr.com
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3 T connectome scanner — hardware, pulse sequences, and scanning
protocols

3 T hardware
All HCP subjects are scanned on a customized Siemens 3 T

“Connectome Skyra” at WashU, using a standard 32-channel Siemens
receive head coil and a “body” transmission coil designed by Siemens
specifically for the smaller space available using the special gradients
of the WU-Minn and MGH-UCLA Connectome scanners. Relative to a
standard commercial Skyra, the customized hardware includes a
gradient coil and gradient power amplifiers that together increase
the maximum gradient strength from 40 mT/m to 100 mT/m on the
WU-Minn 3 T. This specifically benefits diffusion imaging, and on
theoretical grounds (Ugurbil et al., 2013) it should provide signifi-
cant gains over the standard 40 mT/m though not as much as the
300 mT/m customized gradients used by the MGH/UCLA HCP con-
sortium. For the specific method and diffusion weighting (b values)
chosen in the WU-Minn consortium, 100 mT/m maximal gradient
strength provides much of the gain that would be available at
300 mT/m (Ugurbil et al., 2013); the relative merit of each depends
on the method and b-values employed. Thus, the two hardware sys-
tems provide complementary platforms for exploring the possible
improvements that are available for tractography.

Placing the customized 100 mT/m gradient set into the Siemens 3 T
Skyra system resulted in a clear inner bore diameter of 56 cm, smaller
than the standard Siemens 3 T Skyra bore size (70 cm diameter) or a
Siemens Trio 3 T Trio (60 cm diameter); in the absence of a custom
designed patient table, this smaller bore necessitated the placement of
the patient table higher in the bore, resulting in the subject's head not
being centered along the gradient isocenter. As a consequence, all
scans have gradient distortions larger than in a conventional scanner.
These distortions have been corrected in HCP preprocessed data, but
must be carried out separately by anyone startingwith the unprocessed
(raw) HCP scan data (see below).

Pulse sequences
The most significant pulse sequence development for the HCP was

the implementation and optimization of slice-accelerated multiband
(MB) acquisitions for fMRI and dMRI (Feinberg et al., 2010; Larkman
et al., 2001; Moeller et al., 2008, 2010; Setsompop et al., 2012; Ugurbil
et al., 2013). In general, multiband pulse sequences greatly increase
the amount of data acquired per unit time, using a strategy of
simultaneously exciting and acquiring multiple brain slices, which are
then separated from one another during image reconstruction, based
on the spatial sensitivity profiles of the multiple receive coils (32
channels for the HCP standard Siemens 3 T head coil). This efficiency
increase can lead to substantially improved functional SNR (Feinberg
et al., 2010; Smith et al., 2011), the ability to acquire more diffusion
data points (Sotiropoulos et al., 2013c), and/or increases in spatial reso-
lution for fMRI or dMRI (Ugurbil et al., 2013). The optimal multiband
factor and other pulse sequence parameters depend on a complex set
of trade-offs that entailed extensive piloting and analysis (Smith et al.,
2013; Sotiropoulos et al., 2013c; Ugurbil et al., 2013). Piloting for the
3 T Connectome scanner was done at UMinn (CMRR) prior to shipping
the scanner to WashU in May 2012. The multiband accelerated pulse
sequences developed for the HCP project are available to interested
sites (more than 60 as of February, 2013) using the Siemens “customer
to peer” sequence distribution procedure. Implementation ofmultiband
sequences for non-Siemens platforms (General Electric and Phillips) is
ongoing as part of an additional HCP-funded effort.

Based on HCP piloting, we established an optimized fMRI protocol
(both resting-state and task-evoked) on the Connectome Skyra that
includes a multiband factor of 8, spatial resolution of 2 mm isotropic
voxels, and a TR of 0.7 s (see Smith et al., 2013; Ugurbil et al., 2013).
Each of the 2 hour-long sessions includes both resting-state and task
fMRI. First, two 15-minute resting-state scans (eyes open and fixation
on a cross-hair) are acquired with opposite phase encoding directions
(L/R and R/L), for a total of 1 h of resting-state data over the two-day
visit. Second, approximately 30 min of task-fMRI is acquired in each
session, including 7 tasks split between the two sessions, for a total
of 1 h of t-fMRI; each task is run twice, in opposing (L/R and R/L)
phase-encoding directions (Barch et al., 2013). Parameters selected
for diffusion imaging based on pilot data include a multiband factor
of 3, nominal voxel size of 1.25 mm isotropic, and 270 diffusion
weighted scans distributed equally over 3 shells defined with
b-values of 1000, 2000 and 3000 s/mm2 (Sotiropoulos et al., 2013c;
Ugurbil et al, 2013). Scanning each subject for 55 min enables
acquisition of 90 diffusion orientations per shell and a total of 18
b = 0 scans. Each scan is repeated along two phase encoding
directions (L/R and R/L) to allow correction of susceptibility induced
distortions. Combined with the spatial resolution of 1.25 mm
isotropic, this yields exceptional data quality for in vivo whole
brain diffusion imaging at 3 T (Sotiropoulos et al., 2013c; Ugurbil et
al., 2013). Structural scans include a pair of T1-weighted and a pair
of T2-weighted images, all acquired at 0.7 mm isotropic resolution
(Glasser et al., 2013b), plus ancillary scans, for a session duration of
~40 min. The higher resolution compared to standard 1 mm structural
scans improves the fidelity of cortical surface reconstruction and pro-
vides higher quality myelin maps (Glasser et al., 2013a; see below).
The high quality of the structural, fMRI and dMRI data is illustrated
below and in other articles in this special issue.

Head motion and physiological monitoring
Head movements, even small in magnitude, can have deleterious

effects on MR data quality for all modalities. Fortunately, our prelimi-
nary analyses indicate that headmotion is relatively low in themajority
of HCP subjects. To further address head motion, in most scan sessions
we acquired dynamic head position information using an optical
motion tracking camera system (Moire Phase Tracker, Kineticor). This
system monitors head position precisely and in real-time using an
infrared cameramounted in the scanner bore. Images of Moire interfer-
ence fringes on a target affixed by clay to the bridge of the subject's nose
are streamed in real time to a computer that displays the current posi-
tion of the sensor and stores the positional information in a data file
linked to the associated MRI scan. The stored file of head position and
head movement can be used for post-hoc analyses. We also use it as a
feedback trigger in dMRI scans to interrupt the movie being viewed
whenever suprathreshold displacement and/or rapid head movement
occur. Positional information can also be routed to the MRI scanner
computer and can in principle be used prospectively to update the
MRI slice prescription in real time (Zaitsev et al., 2006). However,
prospective motion correction is not part of our 3 T HCP acquisition
protocol because the technology became available only late in the HCP
method development phase and was not sufficiently tested and devel-
oped before the data collection protocol was finalized.

We also acquire cardiac and respiratory signals associatedwith each
scan, using a standard Siemens pulse oximeter placed on a digit and a
respiratory belt placed on the abdomen. These signals are linked to
scan onset using a trigger pulse generated by the pulse sequence.
They are written to text files and assigned a unique file name that
enables matching to the corresponding scan. These physiology datasets
were not ready at the time of the initial Q1 data release but will be in-
cluded for all available datasets at the time of the Q2 release for use
by other investigators. Ongoing HCP analyses will compare resting-
state and task-fMRI data with vs without regression of physiological
signals. If warranted by these analyses, additional data files reflecting
such corrective steps may be included with the quarterly data releases.

Image reconstruction and conversion to unprocessed NIFTI data
The raw data from each scan is converted into standard (16 bit)

DICOM images through a set of modality-specific reconstruction
processes. The 16 bit DICOMs allow for an extended dynamic range of
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signal intensity values, which is advantageous with suchmulti-channel
receiver arrays where signal intensity variations can be quite large.
Major improvements to the standard reconstruction process have
been made in order to improve the data quality (especially for dMRI,
Sotiropoulos et al., 2013b) and to reduce the reconstruction time for
the very large HCP datasets (Ugurbil et al., 2013).

DICOM files for each scan are converted to standard NIFTI format
(using dcm2nii made available by Chris Rorden — http://www.
mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html), and all scan
types containing potentially identifiable facial features are defaced
(Milchenko and Marcus, 2013), with visual QC inspection to confirm
successful defacing. Conversion to NIFTI also removes date stamps
and other potentially sensitive information. The resultant NIFTI files
constitute the unprocessed datasets that are part of the quarterly data
releases.

7 T hardware and pulse sequences

Scanning of 200 subjects at 7 T will be done at UMinn using a
Siemens 7 T scanner. 7 T provides increases in both the image SNR
(Vaughan et al., 2001) and functional contrast-to-noise (Yacoub et al.,
2001), compared to lower fields. This in turn permits the acquisition
of much higher resolution images. Additionally, higher fields increase
the relative sensitivity to themicrovasculature in BOLD-based function-
al images (Ogawa et al., 1993; Ugurbil et al., 2003; Uludag et al., 2009),
resulting in a smaller point spread function (Shmuel et al., 2007).

Refinement and optimization of 7 T pulse sequences for the HCP
began in 2012 and will be finalized for the acquisition phase commenc-
ing in the fall of 2013. Initial pilot studies have focused on fMRI and have
produced high quality images at higher spatial resolutions (~ 1 mm)
than the 2 mm isotropic voxels used for fMRI data acquired in HCP
subjects at 3 T. The functional contrast to noise at such high resolutions
is not compromised, despite the ~8 times smaller voxel size, because of
the aforementioned increases in image SNR and BOLD based contrast
(Ugurbil et al., 2013). The acquisition of such high resolution images
will result in lower temporal resolution than the 2 mm isotropic resolu-
tion 3 T data, because the many more slices needed to cover the entire
brain results in a substantial increase in the TR. Further, the requirement
of in-plane acceleration, due to the higher resolution images combined
with themuch shorter T2* at 7 T, limits the achievablemultiband factor,
because it also relies on the coil's sensitivity profile to accelerate the ac-
quisition. Despite this, early results (see Ugurbil et al, 2013) indicate
that ~1 mm isotropic resolutions over the whole brain are feasible
with a TR of around 2 s. Further optimization of image reconstruction
for such high resolution images is ongoing, in order to address several
technical issues (e.g., increased sensitivity to motion, increases in B0
inhomogeneity, and larger fMRI data rates).

Data processing and preliminary analyses

Unprocessed images from MRI scanners invariably contain several
types of spatial distortion, are not in a standard anatomical space, and
are misaligned across modalities. They also contain various types of
modality-specific noise, artifacts, and biases. Many stages of process-
ing are needed before analyses of neurobiological interest can begin
in earnest. In order to make best use of the high-resolution HCP
datasets, it is critical to compensate as much as possible for these
distortions, biases, and artifacts, and also to acknowledge the poten-
tial impact of residual confounds.

Processing of the HCPMRI data is subdivided into two broad catego-
ries. During the first two years of the HCP, intensive efforts were put
into optimizing a set of preprocessing steps that compensate for spatial
distortions and perform other useful transformations and operations,
but minimize the overt loss of data or modification of the time course
of fMRI time series data. The optimization process entailed critical
evaluation and comparisons of how various existing and new methods
performed, then packaging the bestmethods into a set of preprocessing
pipelines appropriate for consistent and systematic application to all
HCP datasets. The resulting preprocessing pipelines provide substantial
improvements used for each of theMRI modalities, including structural
MRI, fMRI (both rfMRI and tfMRI), and dMRI. Some of the refinements
have already been incorporated into the latest versions of FSL,
FreeSurfer, and Connectome Workbench, three major software
packages used by the HCP pipelines. The HCP minimal preprocessing
pipelines are described in detail in four other articles in this special
issue (Barch et al., 2013; Glasser et al., 2013b; Smith et al., 2013;
Sotiropoulos et al., 2013c) and are summarized only briefly below.

A second category of processing includes various steps to remove
noise and minimize artifacts and biases that are characteristic to each
modality. For fMRI, one set of issues revolves around de-noising, and
removal of motion confounds. Another involves brain parcellation
and network analysis. For dMRI, key issues involve fiber orientation
estimation followed by probabilistic tractography. These ‘additional
processing’ methods are still under active development within the
HCP.

In the following discussion of each separate modality, we summa-
rize the progress achieved in preprocessingmethods, the current status
of additional analysis strategies, and examples of interesting prelimi-
nary results obtained for that modality. We start with analyses that
can be carried out using structural MRI data alone, followed by rfMRI
and dMRI (the modalities most informative about connectivity), and
finally tfMRI and MEG (the modalities most closely related to brain
function).

Structural MRI and cortical shape analyses
For each subject, the HCP acquires a pair of T1-weighted (T1w) scans

and a pair of T2-weighted (T2w) scans, both at a spatial resolution of
0.7 mm isotropic voxels. Obtaining higher resolution than conventional
1 mm isotropic voxels is important because many HCP analyses rely on
cortical surfaces that are as accurate as possible. Each structural scan is
evaluated by a trained rater to assess overall quality (poor, fair, good,
and excellent), based on visual inspection of tissue contrast, spatial
blurring, ringing, and other possible artifacts. The only scans used for
structural preprocessing pipelines and released to the community are
those in which one or more good/excellent T1w and T2w scans were
acquired in the same session (and accompanied by corresponding
receive and transmit bias field maps that are used in preprocessing).

TheHCP structural pipelines use FreeSurfer 5.1 software plus a series
of customized steps that combine information from both T1w and T2w
scans for more accurate white and pial surfaces. Fig. 1A shows a
parasagittal slice through a T1w scan from one HCP subject, along
with surface contours for the ‘pial’ and ‘white’ surfaces generated by
FreeSurfer. This illustrates the high quality of the structural images
themselves and of the cortical segmentation, including regions where
cortex is notably thin, such as the calcarine sulcus (red arrow) and
precentral sulcus (black arrow). The fine detail in the cerebellum is
also notable, as most lamellae and even many individual folia are
discernible.

Cortical myelin maps are another useful type of data that can be
extracted from structural images by computing the ratio of the T1w
and T2w image values at each voxel and mapping this ratio to the
cortical surface (Glasser and Van Essen, 2011). Figs. 1B, C show mye-
lin maps displayed on inflated hemispheres of the same subject. In
general, the myelin maps for this and the other HCP subjects are
higher in quality than those originally reported (Glasser and Van
Essen, 2011), thanks to the higher spatial resolution (0.7 vs 1 mm
isotropic voxels) coupled with several algorithmic improvements
(Glasser et al., 2013a,b).

Registration to atlas space includes an initial volumetric registration
toMNI152 space using FSL's linear FLIRT tool, followed by the nonlinear
FNIRT algorithm, which does an excellent job of aligning subcortical
structures. Cortical surface alignment benefits from a subsequent
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Fig. 1. A. Parasagittal slice through posterior cortex of T1w image from subject A1 (study-specific code), with accurate pial and white surface contours, even where cortex is thin
(arrows). The fidelity with which the FreeSurfer white and pial surfaces track the anatomical boundaries is much better than the initial surfaces generated by running FreeSurfer
5.1 on 1 mm isotopic T1w data from the same subject (cf. Figs. 11, 12 in Glasser et al., 2013b). B, C. Myelin maps on inflated left and right hemispheres of subject A1. Highlighted
vertices centered on myelin hotspots in the left hemisphere (B, black) have geographically corresponding vertices located within myelin hotspots in the right hemisphere (C, blue).
The myelin maps illustrated here are improved over those available in the HCP Q1 data release by virtue of a step that reduces residual low spatial frequency biases by subtracting a
highly smoothed population-average myelin map (see Glasser et al., 2013a Fig. 22 and associated text for details).
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stage of surface-based registration to a population-average surface,
using FreeSurfer to register each hemisphere to a separate left and
right atlas surfaces based on matching of cortical folding patterns
(Fischl et al., 1999). This is followed by registration to the Conte69
atlas, which brings the left and right hemispheres into precise
geographic alignment using interhemispheric landmark-constrained
registration (Van Essen et al., 2012b). Accurate interhemispheric regis-
tration facilitates a variety of cross-hemisphere comparisons, such as
the correspondence of myelin maps in the left and right hemispheres
in individual subjects. For example, in Figs. 1B and C, eight vertices
centered on hotspots of heavy myelin (MT+, FEF, and two others) are
highlighted in the left hemisphere (black dots). The symmetry in the
pattern of myelin content between the two hemispheres can be appre-
ciated by comparing the location of corresponding vertices in the two
hemispheres, which were selected to be centered on myelin hotspots
in the left hemisphere (black circles) and are approximately centered
on corresponding hotspots in the right hemisphere (blue dots).

A wide variety of morphometric and heritability analyses will be
feasible to carry out using HCP structural datasets. Such analyses can
capitalize on the high quality of HCP structural scans, surface recon-
structions, and myelin maps; the associated behavioral data available
for each subject; and the availability of family structure information
(e.g., twin vs.or nontwin status). For example, Fig. 2 shows maps of
cortical shape for two pairs of identical twins (A and B), displayed on
the inflated atlas right hemisphere; these are FreeSurfer ‘sulc’ maps, in
which bright regions represent gyral crowns and dark regions represent
buried cortex (the darker the shading the deeper the sulcus). On
visual inspection, there are many differences in these ‘shape maps’
(e.g., arrows and highlighted vertices). The differences in shape
maps for identical twins (A1 vs A2; B1 vs B2) are comparable to
those between unrelated individuals (either ‘A’ subject vs either ‘B’
subject). This is consistent with previous research suggesting that
cortical folding patterns are only modestly heritable (Botteron et
al., 2008), but extensive data on MZ and DZ twins and their siblings
in the HCP datasets will enable detailed analysis of the heritability
of cortical shape, myelin maps, and many other attributes, including
the connectivity and functional data discussed below.
Resting-state fMRI
Preprocessing of fMRI data (both resting-state and task-fMRI)

involves two pipelines, one carried out entirely on the volume data.
The second involves mapping the data to cortical surfaces and subcorti-
cal gray-matter domains using the recently introduced CIFTI data
format that offers several advantages (Glasser et al., 2013b; Marcus et
al., 2013). CIFTI is predicated on the dual notion of (i) restricting data
storage and analysis to just the gray matter domains of interest
(hence bypassing the storage of white matter and non-brain data),
and (ii) representing gray matter in a way that respects its natural
geometry: surface vertices for cerebral cortex and voxels for subcortical
graymatter. This is reflected by the term “grayordinate”, which includes
any surface vertex or subcortical voxel that represents gray matter.

Temporal filtering and de-noising
Neurobiologically relevant fluctuations, which ideally should be the

only signals used to drive functional connectivity analyses, represent
only a small fraction (~4%) of the total temporal variance in the mini-
mally preprocessed datasets (Glasser et al., 2013b; Marcus et al.,
2013). Hence, it is crucial to eliminate as much as possible the artifacts
and noise, while preserving as much signal as possible. Our overall aim
is to be thorough in removing aspects of the data that can be identified
as artifact with reasonably strong specificity, while taking a more min-
imalist approach to removing ambiguous or mixed (signal + noise)
data components. For example, the HCP does not apply temporal
lowpass filtering, because the highest frequencies cannot be considered
to only contain artifact. Similarly, very unaggressive highpass temporal
filtering is applied, quite close in effect to linear detrending. In both
cases, it is easy for researchers to subsequently apply their own, more
aggressive, temporal filtering on the downloaded datasets, should
they choose to do so.

One promising approach to removing structured artifacts from the
minimally preprocessed data involves application of independent
component analysis (ICA) denoising to each 15-minute rfMRI dataset.
FSL's MELODIC tool (Beckmann and Smith, 2004) is used to decompose
the data into multiple (typically ~230) components, each comprising a
single spatial map and an associated timecourse. Some components



Fig. 2. Cortical shape features in identical twins. Highlighted vertices are locations on a gyral crown (white ridge) in twin A1 (yellow, blue arrows) or in twin A2 (red, green) but are
deeper in a sulcus in the ‘geographically corresponding’ location in the other twin. Subjects are identified in a study-specific code (A1, A2, B1, B2) in conformance with the Restrict-
ed Access Data Use Terms (see below).
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represent artifacts such as head motion or cardiac pulsation, while
others represent valid neuronally-related spontaneous fluctuations. A
new tool called ‘FIX’ (FMRIB's ICA-based X-noiseifier; Salimi-Khorshidi
et al., 2013, in preparation) is used to automatically classify components
into “bad” versus “good”. The bad components' timeseries are then
regressed out of the data, along with various head-motion-related
confound regressors. FIX has been hand-trained and tested on one
hundred 15-minute HCP datasets, and has achieved better than 99% ac-
curacy rate in correctly classifying components. The resulting resting-
state network timeseries show exceptionally clean power spectra
(Smith et al., 2013).

Despite the success of the above cleanup process for structured
artifacts, spatially more global artifacts can remain in the data. This
may include motion artifacts (Power et al., 2013) that are not fully
removed by the above processing steps, and which may artifactually
influence correlation-based estimates of functional connectivity.
Ongoing analyses and discussions within as well as outside the HCP
consortium may provide a better understanding of the residual global
Fig. 3. A. A map of functional connectivity (after regression of the mean gray timecourse)
location in right retrosplenial cortex (black arrow, black circle). B. A functional connectivit
of the default mode network).
and motion confounds, as well as additional options for reducing
them further.

Following preprocessing and artifact removal, an important next
stage in HCP connectome analysis is the generation of “dense
connectomes”, either at single-subject or group level. A dense
connectome is the full (voxels × voxels) or (grayordinates ×
grayordinates) correlation matrix obtained by correlating the
timeseries of every brain voxel or every grayordinate with every
other brain voxel or every grayordinate. These matrices are massive
(190 GB and 32 GB respectively); the major data reduction by
shifting from a voxel-based to grayordinate-based representation is
immediately apparent.

Once dense functional connectomes have been generated for individ-
uals or groups, they can be used in several neurobiologically interesting
ways. Two powerful and complementary approaches involve seed-
based correlation analysis and ICA-based analysis of network organiza-
tion; both approaches are used extensively within the HCP consortium.
Fig. 3 illustrates functional connectivity maps in an individual HCP
in the left and right hemispheres of an individual HCP subject associated with a seed
y map for a nearby seed location (white arrow, black circle) in cingulate cortex (part
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subject for two seed locations, one in retrosplenial cortex (Fig. 3A, black
arrow) and the other just a few mm more dorsal in posterior cingulate
cortex (Fig. 3B, white arrow). Many of the regions that are strongly cor-
related (yellow, red) with the retrosplenial seed are poorly correlated
or anti-correlated with the nearby seed in cingulate cortex (blue, pur-
ple; but note this is after regression of the mean gray-matter
timecourse — see below). These striking differences in functional
connectivity for nearby locations reflect several factors, including
the high quality (and large amount) of data acquired from each sub-
ject; the use of preprocessing and analysis steps that respect the to-
pology of the cortical sheet; and the advanced methods used to
reduce noise and artifacts. These and many other comparisons that
can be used during seed-based analyses take advantage of
‘point-and-click’ interrogation of remotely stored dense connectome
datasets available in the Connectome Workbench visualization plat-
form (see below).

Fig. 4 shows a functional connectivity map for a seed location in
lateral parietal cortex, probing a dense connectome generated by
concatenating rfMRI timeseries data from 20 HCP subjects. Several
points merit comment. (i) The signal-to-noise improves substantially
by virtue of the large group size. (ii) The functional connectivity
hotspots associated with this location are spatially more blurred than
equivalent maps derived from single subject datasets, owing to the
fact that shape-based inter-subject registration can be inaccurate in
aligning functionally defined areas, especially in regions of high folding
variability. (iii) In contrast to Fig. 3, these correlations are estimated
without regression of the mean gray timecourse. Hence, the anti-
correlated regions (blue, purple) are smaller in extent, because the
mean is not forced to be zero. The neurobiological interpretation of
different types of representation (full correlation; correlation after
mean gray-matter timecourse regression; and the partial correlation
approach illustrated below) is not well understood, and none should
be considered a perfect measure of direct anatomical connectivity. The
analysis strategies that are neurobiologically most informative remain
under active investigation (e.g., Smith, 2012; Smith et al., 2013).

Another major objective is to use functional connectivity data for
parcellating the brain into distinct parcels, or subdivisions. Classical
parcellations of cortical areas and subcortical nuclei commonly assume
that eachparcel is topologically contiguous and is non-overlappingwith
neighboring parcels (aside from the experimental uncertainties in
Fig. 4. A map of functional connectivity (full correlation converted to Z-statistics) in the left an
defaultmode network), froma group average functional connectivity analysis (20 subjects from
correlations are thresholded at Z > 5 and negative correlations are thresholded at Z b −2.5.
Adapted, with permission, from Smith et al. (2013).
areal boundaries). Several approaches to brain parcellation based on
functional connectivity have been explored, including methods based
on spatial gradients (Cohen et al., 2008; Smith et al., 2013), snowball
sampling (Wig et al., 2013); and region-growing (Blumensath et al.,
2013). These efforts are still in early stages of development and must
cope with two fundamental challenges: (i) the strength, or sharpness
of transitions in functional connectivity vary widely and can be
influenced by noise and biases in individual subjects; and (ii) the fidel-
ity of inter-subject alignment using shape-based surface registration
methods is imperfect in regions of high folding variability, resulting in
misalignment and spatial blurring of functional connectivity gradients
(cf. Robinson et al., 2013; Van Essen et al., 2012b).

ICA provides a powerful alternative approach to subdividing the
brain into regions that functionally have a high degree of indepen-
dence, but are not constrained to be topologically contiguous or
non-overlapping. For example, Fig. 5A shows cortical surface maps
of five example ICA components from a 22-component group-level
ICA-based network analysis carried out on 20 HCP subjects (the
same group as in Fig. 4). The ICA approach can support a much finer-
grained spatial analysis involving hundreds of ICA components (see
Fig. 10 below and Smith et al., 2013), but the coarser-grained analysis
shown here is useful for illustrative purposes. ICA component 1 covers
higher-level visual areas. ICA Component 7 includes the central visual
field representation of V1 and V2, whereas component 3 mainly in-
volves the peripheral visual field representation of these two areas.
This fits with evidence for a major transition in functional connectivity
that cuts across both V1 and V2 in their mid-eccentricity range (Yeo et
al., 2011); it implies that network (parcel) boundaries defined by func-
tional connectivity do not always respect classical areal boundaries (for
other examples, see Yeo et al., 2011; Power et al., 2011; Van Essen and
Glasser, 2013). ICA components 12 and 15 include several parts of the de-
fault mode network, and support the hypothesis that this network in-
cludes functionally distinct subregions (Andrews-Hanna et al., 2010).

Fig. 5B illustrates how “parcellated connectomes” can be derived
from the preceding ICA-based analysis. Each ICA component (parcel)
has an associated timeseries (representing timeseries from voxels/
grayordinates in that parcel), and the parcels × parcels network matrix
can be generated, for example, just by correlating theseNparcels timeseries
with each other. The matrix entries below the diagonal represent
the full correlation, whereas those above the diagonal represent the
d right hemispheres associated with a seed location in the left parietal cortex (part of the
theHCPQ1data release, but not the same as the standard ‘20unrelated’ subjects). Positive
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Fig. 5. A. Five example components from a 30-component ICA analysis (8 were discarded as being either artifact or being inconsistent across subjects) displayed on inflated cortical
atlas surfaces. B. 22 × 22 correlation matrices (group-average parcellated connectomes) derived from the timeseries associated with the 22 group-ICA components. Full correlation
is shown below the diagonal; partial correlation above the diagonal. Each row or column is the set of correlations (red, yellow) or anti-correlations (green, blue) between a single
network matrix “node” and all other nodes; the nodes were reordered from the original ordering, according to a hierarchical clustering algorithm (depicted at the top). The network
analysis and figure generation was carried out using the FSLNets package (fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets).
Adapted from Smith et al. (2013).
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partial correlation matrix (each pairwise correlation is estimated after
regressing out the other Nparcels-2 timeseries). The parcels are organized
into groups that aremost similar in their timeseries based on a hierarchi-
cal clustering analysis applied to the full correlation matrix. Both the full
correlation matrix and the partial correlation matrix represent mathe-
matically well-defined entities; however, as alluded to above, neither
should be regarded as an explicit, validated indicator of direct anatomical
connectivity, although significant values in the partial correlationmatrix
will hopefully have a high probability of reflecting genuine connections
(Smith, 2012).

The preceding examples illustrate howparcellations can be generat-
ed and analyzed using group data, where the signal-to-noise is high.
One strategy for the future will be to apply parcellations derived at
the group-level (frommultiple subjects' dense connectomes combined)
to each individual subject. Then a parcellated connectomematrix could
be generated based on the data from each subject. These subject-
specific parcellated connectomes can then be averaged across subjects,
or investigated to see how aspects of the matrices co-vary with
behavioral or genetic factors. Such an approach offers the advantage
of consistency based on a single parcellation based on a group average
(a given parcel “means the same thing” in all subjects), but would not
be optimal in compensating for intersubject differences in the size and
location of each parcel.

Diffusion MRI analyses

The preprocessing and analysis of dMRI data involve a very different
set of technical considerations than those just discussed for rfMRI.
However, the overarching approach adopted by the HCP is similar:
capitalize on the high quality of the acquired data by minimizing
distortions, maximizing spatial registration, and addressing the residual
confounds using the best methods available.

Extensive effort has been dedicated to improvements in preprocess-
ing of the diffusion data, to improve fiber reconstruction (Sotiropoulos
et al., 2013c). For example, combining data across multiple receive
coils using a sensitivity-encoding method (SENSE-1) increases the
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dynamic range of the signal relative to the conventional root-sum-of-
squares approach (Lenglet et al., 2012; Sotiropoulos et al., 2012,
2013b). We also developed a novel algorithm that greatly improves
the correction of susceptibility and eddy-current induced distortions
and the effects of subject motion (Andersson et al., 2012; Sotiropoulos
et al., 2013c). The resultant preprocessed dMRI datasets are available
to the community as part of the Q1 data release. Data from any individ-
ual shell (b = 1000, 2000, and 3000 s/mm2) can be usedwith standard
fiber reconstruction techniques, but methods that make use of all three
shells will get the largest benefit. In the initial Q1 data release, the
preprocessed dMRI data are in the coordinate system of the individual
diffusion scans. However, for the Q2 data release (including a
reprocessed Q1 dataset) and all future releases the data will be aligned
to the native structural space in order to facilitate various cross-modal
comparisons (see below).

HCP has developed novel fiber reconstruction algorithms that are
optimized for multi-shell data (Jbabdi et al., 2012). These have not yet
been applied to the full Q1 dMRI datasets, but they will be made avail-
able in future data releases. Probabilistic tractography has been applied
to some of these datasets using FSL's existing probabilistic tractography
approaches to generate dense connectomes in grayordinate space
(Behrens et al., 2007; Sotiropoulos et al., 2013c).

Fig. 6 shows representative fractional anisotropy and color-encoded
principal diffusion direction images from the HCP dMRI data, compared
with a more conventional 2 mm dataset (from a different subject). The
improvement in anatomical detail is clearly visible.

The complex 3D trajectories resulting from probabilistic tractography
analysis pose special challenges, in terms of the large size of the data files,
Fig. 6. The figure shows representative fractional anisotropy and color-encoded principal di
2 mm dataset (from a different subject). The improvement in anatomical detail is clearly dis
The imaging protocol for the conventional data was as follows: Siemens 3 T Verio, 2 mm iso
b = 1500 s/mm ^ 2, TE/TR = 86/10,000 ms, GRAPPA = 2, scan time = 20 min.
the complex formats needed to encode probabilistically computed
streamlines, and the need to visualize the 3D trajectories themselves, as
well as where they intersect with cortical surfaces and subcortical nuclei.
To this end, Connectome Workbench includes the capability for interac-
tive ‘point-and-click’ visualization of probabilistic trajectories (Fig. 7A).
This enables users to access the large trajectory files remotely by
uploading only the trajectory data requested for the selected seed
location. For example, Fig. 7A shows the connectivity trajectory for a
seed location in the lateral prefrontal cortex. The figure shows a full
3D view of a probabilistic trajectory in a ‘whole brain view’ that includes
brain slices and surface contours for a 3D reference frame (panel A left),
and the trajectory's intersection with a single sagittal slice (panel A
right). Panel B shows the average gray-to-gray connectivity from 9
subjects seeded at the same point on a pial (left) and inflated (right)
hemisphere. Panel C shows average resting state functional connectivi-
ty from the same source location. These different views and datasets are
easily integrated in a single Workbench screen that allows for yoked
visualization of connectivity in each view.

Efforts will continue to further improve fiber orientation modeling
as well as tractography algorithms that take advantage of the richness
of the HCP data. While containing a wealth of information, dMRI
connectomes will inevitably contain biases and errors resulting from
limitations of the technique. Some of these are familiar (Jbabdi and
Johansen-Berg, 2011), but generating and interpreting entire gray-to-
gray connectomes bring new challenges. For example, a notable bias,
present for clear geometric reasons, is that current tractography
approaches are muchmore likely to trace to gyral crowns than to sulcal
depths (Van Essen et al., in press). Detailed comparisons in macaque
ffusion direction images from the HCP dMRI data, compared with a more conventional
cernible. For example, many white matter tracts appear thicker (less partial voluming).
tropic voxels, 64 slices, 60 directions, 2 averages with reversed phase encoding polarity,

image of Fig.�6


Fig. 7. Structural connectivity in an individual and in group averages and in comparison to functional connectivity. A. Connectivity trajectory visualization for a single HCP subject
(100307). Probabilistic trajectories seeded from a single grayordinate in left frontal cortex and intersecting the white/gray matter boundary surface in at least one more location are
shown on the left panel; the right hemisphere's midthickness surface provides a spatial reference. The inset (right) displays a part of the trajectories for a single sagittal slice,
overlayed on a T1w image (white/gray matter boundary shown with the black solid line). B. Structural connectivity values in a group average (9 HCP subjects) for the same
seed location (black dot), viewed on the inflated cortical surface. The values are displayed using a logarithmic scale. C. Functional connectivity values for the same seed location,
displayed on the inflated surface. The values correspond to the average functional connectivity of a group of 20 HCP subjects.
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monkeys with both histology (Sotiropoulos et al., 2013a; Van Essen et
al., in press) and invasive tracer studies (Jbabdi et al., 2013) will better
inform our understanding of such biases, and the most attractive
strategies for next generation tractography algorithms.

Task-fMRI (tfMRI) analyses

The HCP acquisition protocols include seven tfMRI paradigms,
three of which (workingmemory, reward processing andmotor pro-
cessing) follow 30 min of rfMRI in one imaging session, and four of
which (language, social cognition, relational processing and emotion
processing) follow 30 min of fMRI in a second imaging session
(Barch et al., 2013). The spatial preprocessing steps for tfMRI are
identical to those used for rfMRI, both for the volume-based and
surface-based aspects (Glasser et al., 2013b).

For the Q1 data release, we completedmore extensive processing on
all of the tfMRI data from 20 subjects whowere unrelated to each other,
using both volume and grayordinate-based (i.e., surface-based) tfMRI
processing. The task modeling was carried out using FSL's FILM tool
(FMRIB's Improved Linear Model, Woolrich et al., 2001), adapted for
the grayordinate data such that FILM's spatial regularization of the
temporal prewhitening is constrained to gray matter. Both approaches
indicated excellent quality data from these paradigms, with clear
group level activation as well as robust activation within individual
subjects in many of the paradigms and contrasts. Here we provide
two examples of this. Fig. 8 displays the results from the working
memory task, a variant of the N-back task, with the specific contrast a
high working memory load (“2-back”) versus a low working memory
load (“0-back”). The data for this task are acquired in ~10 min and
show robust mixed-effects group level activation in dorsal frontal–
parietal and cingulate systems typically associated with working
memory and cognitive control, in both the volume and grayordinate
analyses. Further, we see significant activation in these same regions
in the majority of individual subjects, a result important for the indi-
vidual difference and genetic analysis goals of the HCP.

As another example, Fig. 9 displays results from the language pro-
cessing task developed by Binder et al. (2011), with the specific contrast
being story processing versus math. These data are acquired in approx-
imately 8 min, and show robust group level activation in anterior and
inferior temporal regions, as well as ventral prefrontal regions typically
associated with various components of language processing. As with
the working memory task, we also see activation in these same regions
in the majority of individual subjects. Taken together, these data
illustrate our ability to acquire high quality tfMRI data from a range of
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Fig. 8. Group-average task-fMRI from the working memory task.
Adapted, with permission, from Barch et al. (2013).
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paradigms. These data will provide rich information at both the group
and individual subject level and offer complementary information for
the parcellations and connectivity analyses from both the rfMRI and
dfMRI acquisitions.

Cross-modal comparisons

The availability of information from multiple imaging modalities
in individuals and group averages greatly increases the utility of the
HCP datasets, and it will benefit from improved capabilities for cross-
modal analysis and visualization. One such example has already been
illustrated in which rfMRI-based functional connectivity is compared
to dMRI-based structural connectivity (Fig. 7). Fig. 10 shows another
example of cross-modal comparison that also illustrates the utility of
being able to visualize fMRI data mapped to a cerebellar surface map.
Fig. 9. Group-average task-fMRI fro
Adapted, with permission, from Ba
The top row shows the group-average task activation from the right-
handhandmovement task, analyzed for the same group of 20 unrelated
subjects shown in preceding figures. It includes activation in the
expected location in the left motor cortex (left panel), and also at
two distinct locations in dorsal and ventral cerebella matching
published reports (Buckner et al., 2011). The bottom row shows a
spatially corresponding ICA component from a 100-component
group-level ICA-based network decomposition (with 82 ‘signal’
components), carried out on 66 HCP subjects from the Q1 data
release. The correspondence in spatial patterns between the rfMRI
ICA component and the task-fMRI activation is striking.

More generally, there will be countless analyses that benefit from
the ability to compare data across as well as within modalities, in
individual subjects and in group averages. Besides having the data in a
common spatial framework, it is also important for the data to be
m the language vs math task.
rch et al. (2013).

image of Fig.�8
image of Fig.�9


Fig. 10. A. Task-fMRI activation from the right-hand movement task carried out on the Q1 unrelated 20 subjects, mapped onto the group-average cerebral surfaces (first two panels)
and onto the inflated cerebellar atlas surface that has been mapped to the MNI atlas stereotaxic space (Van Essen, 2009). B. Resting-state fMRI component 13 from a
100-dimensional ICA decomposition (with 82 components judged to be signal), applied to the 66 subjects in the HCP Q1 data release having four rfMRI runs.
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compactly represented (re-emphasizing the advantages of the CIFTI
format over standard NIFTI volumes) and to take advantage of the
flexible visualization options provided by Connectome Workbench.

Subcortical signals

Subcortical gray matter (excluding cerebellar cortex) constitutes
about 8% of brain volume; remarkably, the many vital roles of subcorti-
cal nuclei in brain function are achieved with fewer than 1% of the total
number of brain neurons (Azevedo et al., 2009). It is obviously very
important that subcortical regions be well integrated into the HCP
analyses of brain connectivity and function. Although not emphasized
in the present article, the HCP data do include robust task activations
and resting-state networks from the fMRI data (Barch et al., 2013;
Smith et al., 2013). However, the SNR for subcortical regions is generally
weaker than for cerebral and cerebellar cortical regions, in a large part
because of their buried location relative to the 32-channel head coil
(Ugurbil et al, 2013). In terms of visualization, recent advances in
Connectome Workbench support montage views that display volume
slices restricted to subcortical domains alongside surface views of
cerebral and cerebellar cortex, thereby allowing each domain to be
represented using a visualization format appropriate for its topology.

MEG acquisition and analysis

As noted previously, MEG will be acquired concurrently in 100
HCP subjects, starting in the spring of 2013. The obvious advantage
of MEG over MRI is the much higher temporal resolution (milliseconds
vs seconds), but it occurs at the expense of coarser spatial resolution
(centimeters instead of millimeters). The session protocol includes
resting-state scans (rMEG) plus three task-evoked scans (tMEG) involv-
ing amodified version of theworkingmemory task being used in tfMRI,
amodified version of themotor processing task being used in tfMRI, and
a modification of a language task piloted during Phase I for tfMRI.

MEG data will be collected on a whole head MAGNES 3600 (4D
Neuroimaging, San Diego, CA) system housed in a magnetically
shielded roomat Saint Louis University. Preprocessing to improve signal
quality includes ICA-based removal of physiological artifacts (Escudero
et al., 2007). An anatomy processing pipeline links MEG to structural
MRI by co-registration of theMEG sensors to the anatomical coordinate
system of the sMRI data, followed by generation of volume conduction
models of the head to provide anatomical constraints for source locali-
zation analyses.

Accurate source reconstruction is a critical prerequisite for compar-
ing electrophysiological results to those obtained from other imaging
modalities. HCP will use three source reconstruction strategies, all
supported by the FieldTrip Toolbox (Oostenveld et al., 2011). Resting
state analyses will use a model-driven approach to computing the
inverse solution. Specifically, weighted minimum-norm estimates
(wMNE)will be used to generate computationally efficient and reliable
projections of resting activity into source space (de Pasquale et al., 2010,
2012; Mantini et al., 2011). Task data will be analyzed using two
beamformer reconstruction approaches, which are adaptive, data-
driven methods for deriving the inverse solution from empirical
evidence (sensor-space covariance or cross-spectral density). Linear
constrained minimum variance beamformers (LCMV) reconstruct
source space data in the time domain and are useful for inferring con-
nectivity in oscillatory brain activity (Brookes et al., 2011; Schoffelen
and Gross, 2009). Dynamic imaging of coherent source (DICS) recon-
structs source-space data in the frequency domain (Gross et al., 2001;
Van Veen et al., 1997).

Following source reconstruction, both seed-based and data-driven
group-ICA methods will be used to analyze dynamic connectivity.
Additional processing will be used to relate the electrophysiological
connectivity matrices to the parcellations used for analyzing func-
tional and structural connectomes. MEG source reconstructions may
include up to ~8000 nodes (hence, electrophysiological connectivity
estimates between 64 million node pairs). Dense connectivity matri-
ces generated via fMRI or dMRI will have an order of magnitude more
grayordinates, but a much smaller number (hundreds) of functionally
or anatomically distinct parcels. For visualization, the electrophysio-
logical data will be mapped onto this anatomically parcellated

image of Fig.�10
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representation. The availability of resting and task MEG data in
ConnectomeDB will enable the exploration of multiple features of
the data using both existing and yet to be developed analysis tech-
niques. In the future, more elaborate connectivity metrics are likely
to become available.

Informatics and data sharing

The HCP has adopted a multifaceted approach to data sharing and
data mining (Marcus et al., 2013). The Q1 data release (March 2013)
includes three distinct levels of data analysis: the unprocessed image
files (after image reconstruction and DICOM to NIFTI conversion); the
minimally preprocessed data; and an additionally processed group
average dataset. This amounts to ~2 terabytes in total for the 68
subjects. The final amount of HCP data may approach 1 petabyte
once all acquisitions and analyses have been done on all 1200 sub-
jects (including 7 T and MEG/EEG scans).

For the Q1 data release, the primary mode of access involves
downloading pre-packaged archives organized by subject, scan modal-
ity, and level of processing. This includes several pre-packaged archives
(a single subject; five unrelated subjects; and 20 unrelated subjects),
which allows exploratory analyseswithout the complications of dealing
with family structure (see below). Because data transfer can be notori-
ously slow when using standard ftp protocols, especially international-
ly, we adopted a UDP-based commercial high speed data transfer
technology (Aspera fasp™), which has performed well in pilot testing
and in the early stages of the Q1 data release. To date, the greatmajority
of investigators have elected to download the minimally preprocessed
datasets rather than the unprocessed NIFTI files, thereby capitalizing
on the HCP preprocessing pipelines described above.

The ConnectomeDB database enables selection of subjects based
on a large number of behavioral phenotype data types that are stored
in the database and available for each subject. Currently, these search
capabilities are mainly useful for selecting subgroups of subjects from
the Q1 data release for download. This is at present of limited utility,
given the relatively small number of subjects available for the first
quarterly release. However, more extensive data mining capabilities
will be added, and the number of subjects will of course increase
with successive quarterly releases.

Datasets will be released on a quarterly basis in order to avoid data
management problems that would arise if the data came out in small-
er ‘dribs and drabs’. Moreover, the extensive data processing and QC
efforts that are essential for the data to be maximally useful to the
community currently require several months between the end of a
quarter's data acquisition and when the data are ready for release.
Thus, each release will cover data acquired up until approximately
three months prior to the release.

In general, our intent is for each quarter's data release to be incre-
mental, by adding to datasets released in preceding quarters. However,
between the Q1 and Q2 release, a number of significant refinements
were made in the pipelines for each of the MRI modalities. Hence, the
Q2 release will also include a complete regeneration of the minimally
preprocessed data fromQ1alongwith the newly processedQ2datasets.
The differences between the original and reprocessed versions of the
minimally preprocessed datasets are expected to be small (except for
the aforementioned change in the coordinate space for dMRI data),
but investigators who have already begun analyses using the initial
Q1 datasets will need to be mindful of these changes before combining
data for subjects acquired in different quarters.

ConnectomeWorkbench is a platform that has been customized for
analyzing and visualizing each of the MRI-based imaging modalities
acquired for the HCP. It includes command-line utilities that support
(along with FSL and FreeSurfer) many of the preprocessing pipelines
and subsequent analysis functionality. Some of the capabilities of the
Workbench visualization platform have been demonstrated in the fig-
ures contained in this paper and in the other HCP articles in this special
issue. Workbench is especially well suited for handling grayordinate
representations (surface vertices and gray-matter voxels) in the CIFTI
format (see Glasser et al., 2013b; Marcus et al., 2013).

Open access and restricted access datasets

To aid in the protection of participants' privacy, theHCP has adopted
a two-tiered data access strategy (http://www.humanconnectome.org/
data/data-use-terms/). Every investigator must agree to FieldTrip Tool-
box. An additional set of Restricted Data Use Terms applies to an impor-
tant subset of the non-imaging data and is essential for preventing any
inappropriate disclosure of subject identity.

The released HCP data are not considered de-identified, insofar as
certain combinations of HCP Restricted Data (available through a
separate process) might allow identification of individuals as discussed
below. It is accordingly important that all investigators who agree to
Open Access Data Use Terms consult with their local IRB or Ethics
Committee to determine whether the research needs to be approved
or declared exempt. If needed and upon request, the HCP will provide
a certificate stating that an investigator has accepted the HCP Open
Access Data Use Terms.

Because HCP participants come from families with twins and non-
twin siblings, there is a risk that combinations of information about
an individual (e.g., age by year; body weight and height; handedness)
might lead to inadvertent identification, particularly by other family
members, if these combinations were publicly released. On the
other hand, this information will be needed for many types of scien-
tific inquiry aimed at characterizing the heritability of brain circuits
and relating brain circuits to behavioral and demographic pheno-
types. In order to minimize the risk of inappropriate disclosure of sub-
ject identity and yet maximize the usefulness of the data for research,
all researchers who wish to make use of the HCP Restricted Access
data elements (including all members of a given laboratory, not just
the principal investigator) must agree in writing to a number of con-
ditions, including the following:

• I agree to keep the data secure (password protected), to use the
data responsibly, and to abide by the following terms

• I will not redistribute or share Restricted Data with others,
including individuals inmy laboratory, unless they have independently
applied and been granted access to the Restricted Access data by the
HCP.

I will abide by the following:

• No reporting of HCP Subject ID numbers when publishing or
publicly reporting analyses that use Restricted data. I will not
include any HCP-assigned subject IDs in any publication or public
presentation that makes use of Restricted Data from individual sub-
jects. I will instead assign my own study-specific subject IDs to each
individual, e.g., subjects A, B, C, etc.

• Family structure is the ONLY Restricted Data element that can be
reported for individual subjects in a publication or public presenta-
tion. When reporting family structure of subjects, individuals must
be assigned study-specific subject IDs.

• If I publish data analyzed using Additional Restricted Data elements
(including handedness, exact age, ethnicity, race, and body weight),
each reported analysis must be based on at least 3 subjects, and the
presentation of the data must not reveal the study-specific subject
ID associated with any particular data point or value.

To mitigate any loss of transparency across studies, HCP will host a
password-protected web page where investigators will be asked to
load a key that maps their study-specific IDs to HCP ID subject IDs
This resource will be accessible only to investigators granted access
to Restricted Data and will facilitate comparison of results across
different studies.

http://www.humanconnectome.org/data/data-use-terms/
http://www.humanconnectome.org/data/data-use-terms/
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It is very important that everyone using Restricted Data understands
and agrees to the full set of terms. Consistent compliance will be aided
by general awareness among reviewers and editors as well as the
scientific community in general. Examples of use case scenarios that
may help investigators to understand how these terms apply to realistic
scenarios are available at: http://www.humanconnectome.org/data/
restricted-access/.

Genetic data based on genotyping (full-genome sequencing if fea-
sible given cost–benefit tradeoffs) will be carried out in 2015. Data
will be stored in dbGaP, and possibly also housed in ConnectomeDB.
Great care will be taken to ensure that the genotyping data is handled
with robust privacy protection while allowing data mining to benefit
from information about population admixture derived from the
genotyping data. This will include risk management for special cases
(e.g., if the biological parents of an individual differs from that
reported by participants), while ensuring that data analyses use
genetically accurate relationships among siblings.

Some lessons learned
The HCP is one of many large-scale imaging projects currently

underway around the world (see Craddock et al., 2013), but it is
distinctive if not unique in several important respects. One is the man-
date to undertake major methodological improvements as a prelude to
scanning a large number of subjects. Another is the unprecedented
amount, quality, resolution and diversity of imaging modalities and
other data types being systematically acquired. A third is the breadth
of the data sharing and data mining efforts, commensurate with the
richness and complexity of the data and the many levels of processing
made available.

Given that the 5-year HCP grant is at its halfway point and is still in
the early stages of systematic data collection and sharing, it would obvi-
ously be premature to declare the overall project a complete success.
Nonetheless, the achievements to date are considerable, and the project
remains on track relative to its original ambitious schedule. This reflects
dedicated efforts and hard work by a large team that currently includes
more than 100 investigators and technical staff from ten institutions in
the consortium (Supplemental Table S5). Collectively, they provide
great breadth of expertise and intellectual perspectives needed to
address the many facets of the project.

Given the size of the consortium and the multi-faceted nature of
the endeavor, a number of operating principles and practices have
proved (and will continue to be) especially useful. Here, we comment
briefly on a few lessons learned and insights gained about the process
of coordinating efforts by a consortium that is both geographically
dispersed and highly diverse in its expertise, in hopes that some of
these might be useful in other contexts.

Teams and working groups
At the beginning of the project we established seven operational

teams (OTs) to organize the work of the consortium: Hardware, pulse
sequences, and preprocessing; dMRI; rfMRI and tfMRI; MEG/EEG;
recruitment, behavior, and genotyping; cross-modal integration and
network modeling; and informatics (http://www.humanconnectome.
org/about/teams.html). To promote high levels of coordination and
collaboration across the different sites, and to give equal weight to
potentially different scientific approaches to the work of the consor-
tium, each OT is co-led by senior investigators from different institu-
tions. Many consortium members participate in multiple teams,
further aiding in cross-fertilization of ideas and in coordination
with work across the teams. In many situations, ad hoc working
groups have been established to address focused issues that typically
included a subset of one or two operational teams. For example, the
informatics efforts reached such a level of complexity after the first
year that the team no longer met as a whole, and instead evolved into
more than a half dozen working groups focused on specific and tracta-
ble components of the project (e.g., preprocessing pipelines; data
storage needs; visualization software; and computational infrastruc-
ture). These working groups form as needed and disband when their
work is completed. A Steering and Operations Committee that includes
the chairs and co-chairs of each Operations Team, as well as additional
senior faculty advisors, provides overall coordination of the HCP effort
as well as guidance on general questions, e.g., how the consortium
will handle publications and share data.

In addition to frequent teleconferences and literally hundreds of
thousands of emails among team members, the planning, data
analysis and consensus-building necessary to develop a unified HCP
approach to data collection has benefitted greatly from semiannual
face-to-face meetings of all (in autumn) or many (in spring) HCP col-
leagues from around the world. These ‘All-Hands’ and ‘Many-Hands’
meetings have proven particularly valuable for addressing complex
issues in an open forum that allows the domain experts time to drill
down into the technical details while also allowing the broader
consortium membership to gain valuable familiarity with key techni-
cal challenges and how they could be addressed. They also helped
engender respect for the unique contributions that each team and
each individual has brought to the table, including technical, concep-
tual and organizational skills and abilities. In addition, they provide us
with an opportunity to interact with and receive feedback from our
NIH Program and Science Officers and our External Advisory Panel
members (Supplemental Table S5), who are also invited and who
participate regularly.

These general organizational approaches were complemented by
the promotion of a mindset of striving for improvements at every
step and in every way possible. The established investigators joined
the consortium with vast amounts of invaluable experience, but also
with the baggage of sometimes relying on standard methods based
on ‘conventional wisdom’ about how best to acquire, process, ana-
lyze, and interpret data. By encouraging all consortium members to
challenge standard assumptions, then let the pilot data and results
from proposed analyses drive the decision; many improvements
have been realized. Some of the advances, such as the decision to
use multiband imaging, have had a large impact on their own. Many
other refinements represent incremental improvements individually,
but the concatenation of many small increments has led to large gains
in the aggregate. This applies to the extensive efforts to refine pulse
sequences, image reconstruction algorithms, and also to the prepro-
cessing and analysis pipelines. A number of these refinements have
already been incorporated into other analysis platforms, including
FSL, FreeSurfer, and Connectome Workbench, so that the benefits
extend well outside the HCP proper.

HCP prospects

At the time this article was submitted, the WU-Minn HCP is at the
midway point of the 5-year grant. It is also in a transitional period,
with an increasing focus on standardized data acquisition and data
sharing, but with important methods refinement efforts are still
continuing. The Q1 data release constitutes only ~6% of the target
number of 1200 subjects. Moreover, the more advanced stages of
data analysis which are essential for characterizing structural and
functional connectivity are still being refined and optimized. The
companion articles in this special issue report many encouraging
preliminary results as well as methodological advances, but not
surprisingly they do not yet report major neuroscientific discoveries.
We expect this to change dramatically over the next several years, as
the HCP generates and shares an immense amount of neuroimaging,
behavioral, and genotyping data, and also provides more extensively
processed data — e.g., ‘dense connectomes’ and ‘parcellated
connectomes’ from individual subjects as well as group averages.
This should lead to a variety of important discoveries about brain
connectivity, its relation to behavior and to other aspects of brain
function, and its genetic underpinnings. We couple our optimism

http://www.humanconnectome.org/data/restricted-access/
http://www.humanconnectome.org/data/restricted-access/
http://www.humanconnectome.org/about/teams.html
http://www.humanconnectome.org/about/teams.html
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about the utility of the HCP datasets with the need to manage expec-
tations and to acknowledge the technical limitations associated with
each of the imaging modalities used by the HCP. For example, fMRI
scans can be impacted by signals “bleeding across” opposing banks
of sulci. Tractography has a bias for showing stronger connections
with gyral blades compared to sulcal banks and fundi. Hence, for
both modalities, the effective spatial resolution does not always
achieve that implied by the size of the acquired voxels. Efforts to
characterize brain circuits in individuals and in group averages must
be mindful of these limitations as well as the strengths of the HCP
datasets.

It is instructive to consider the aggregate amount of imaging infor-
mation obtained via each modality in individual HCP subjects and
what that may imply about the overall ability to characterize brain
connectivity and its variability. The hour's worth of rfMRI scanning
accumulated per subject yields ~5000 frames (TRs) of data for each
of the ~90,000 grayordinates that represent the anatomical substrate
onwhich a dense functional connectome is generated. If, hypothetically,
each time point could encode just 2 bits of information that was
statistically independent of other time points and other grayordinates,
then the theoretical upper bound would be about 1 gigabit (109 bits)
of information per subject. However, given the strong correlations in
time (owing to the slow hemodynamic response function) and in
space (neighboring grayordinates tend to be highly correlated), the
actual amount of information is presumably much smaller, perhaps by
around two orders of magnitude. If so, the amount of information
about brain circuits provided by rfMRI would be in the range of
107 bits per HCP subject. An alternative assessment that yields a similar
estimate comes from considering the covariance matrix of the fMRI
timeseries, which presumably should be more reproducible across dif-
ferent scan sessions than the timeseries itself. At 2 mm resolution the
covariance matrix contains ~8 × 109 (90,0002) elements, or ~4 × 1010

information bits if there are 2 bits per element. If spatial correlations
typically extend over ~50–100 grayordinates (e.g., patches ~15–
20 mm in diameter), this would also suggest about 107 information
bits per subject. For the 7 T HCP scans, the smaller voxel size attainable
(~1 mm3) will increase the number of spatial elements about 8-fold,
but the anticipated temporal resolution will be lower by 2- or 3-fold,
suggesting that the total amount of information may be about 2-fold
greater. It will be interesting to refine such estimates in the future
(and to make analogous estimates for other modalities such as dMRI),
but even this rough ballpark assessment is of some interest. It suggests
thatMRI-based connectivity analyses have the potential to discriminate
connectivity ‘brainprints’ among large numbers of individuals, albeit
not unique for every individual on the planet.

A brief comparison with human genomics is also informative (cf.
Van Essen et al., 2012a). The spectacular successes of the human ge-
nome project have enabled extraordinarily accurate sequencing
(99.99% or better) of the ~3 billion bp of the human genome. However,
the level of nucleotide diversity across individuals is remarkably low
(only about 1 part in 1000; Jorde and Wooding, 2004; Tishkoff and
Kidd, 2004). Hence, high sensitivity to sequence variants is critical for
being able to characterize individual genomic differences and to relate
these differences to phenotypes of interest. In contrast, the accuracy
with which human brain connectivity can be quantitatively assessed
ismuch lower than for genome sequencing, but the degree of individual
variability is far greater. At amacroscopic level, we know that individual
cortical areas vary in surface area by two-fold ormore across individuals
(cf. Van Essen et al., 2012b), and evidence from the macaque monkey
suggests that the strength of pathways between any pair of cortical
areas can vary by one or two orders of magnitude (Markov et al.,
2011). But how pronounced are the individual differences in human
brain connectivity that contribute to distinct behavioral phenotypes or
that derive from distinct genotypes? These are empirical questions
that will be addressed with increasing sensitivity as additional HCP
datasets are acquired and analyzed over the next several years.
In this overall context, we are optimistic that major insights will
emerge from mining of HCP data. In broad strokes, this will include
(i) more accurate charting of brain parcellations, brain networks,
and their dynamics; (ii) improved quantitative characterizations of
network variability across individuals; and (iii) correlations between
behavioral phenotypes and brain networks that provide a deeper
understanding of the neural basis of individual variability. These
insights will in turn provide an invaluable substrate for characterizing
circuit abnormalities in a variety of brain disorders that afflict
humankind.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.05.041.
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