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Abstract

Physiological  ageing  affects  brain  structure  and  function  impacting  its  morphology,  connectivity  and

performance. However, at which extent brain-connectivity metrics reflect the age of an individual and whether

treatments or lifestyle factors such as physical activity influence the age-connectivity match is still unclear.

Here, we assessed the level of physical activity and collected brain images from healthy participants (N=155)

ranging  from 10 to  80  years  to  build  functional  (resting-state)  and  structural  (tractography)  connectivity

matrices that were combined as connectivity descriptors. Connectivity descriptors were used to compute a

maximum  likelihood  age  estimator  that  was  optimized  by  minimizing  the  mean  absolute  error.  The

connectivity-based estimated age, i.e. the brain-connectome age (BCA), was compared to the chronological

age (ChA). Our results were threefold.  First, we showed that ageing widely affects the structural-functional

connectivity  of  multiple  structures,  such as  the  anterior  part  of  the  default  mode network,  basal  ganglia,

thalamus,  insula,  cingulum,  hippocampus,  parahippocampus,  occipital  cortex,  fusiform,  precuneus  and

temporal pole. Second, our analysis showed that the structure-function connectivity between basal ganglia and

thalamus to orbitofrontal and frontal areas make a major contribution to age estimation. Third, we found that

high levels of physical activity reduce BCA as compared to ChA, and vice versa, low levels increment it. In

conclusion, the BCA model results highlight the impact of physical activity and the key role played by the

connectivity between basal ganglia and thalamus to frontal areas on the process of healthy aging.  Notably, the

same methodology can be generally applied both to evaluate the impact of other factors and therapies on brain

ageing, and to identify the structural-functional brain connectivity correlate of other biomarkers than ChA.

Keywords: Physiological ageing, brain age, chronological age, physical activity, brain connectivity, resting

state, diffusion tensor imaging 
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Introduction

Ageing  may  be  defined  as  a  time-dependent  decline  involving  an  accumulation  of  changes  at  the

biological, psychological, and social level1. Interestingly, individuals with the same chronological age (ChA)

exhibit different trajectories of age-related biological deterioration, as measured by biomarkers of functional

performance, tissue integrity and metabolic health2,3. This mismatch reflects two different concepts for ageing.

One  is  ChA,  calculated  as  the  time  running  since  birth,  whereas  the  other  is  the  biological  age,  which,

irrespective of  birth  year, is  based on the level  of  biological  functioning at  a  given  time. The mismatch

between chronological and biological ageing has gained major scientific interest in the past years due to the

potential  implication  on  health  and  disease  of  age-related  molecular,  genetic,  cellular  and  organ-specific

dynamics and their  genetic,  epigenetic,  and environmental  modulators4.  In fact,  it  is well  established that

ageing is one of the main risk factors for most late-onset diseases such as cancer, cardiovascular disease,

diabetes and neurodegenerative diseases5.

In terms of biological brain ageing, psychophysical, neuropsychological and physiological studies support the

fact that brain functional performance declines with age, with specific impact on cognition (long-term and

working  memory, executive  functions,  conceptual  reasoning  and  processing  speed)6,7,  mood (anxiety  and

depression)8,  circadian behaviours (disruption of amplitude and period length) and sleep cycle (poor sleep

quality and delayed sleep onset latency)9. 

These changes in brain performance occur in parallel with well-established age-related macrostructural and

microstructural brain variations. At microstructural level, age has been associated with alterations in synaptic

structures (decreased synaptic density and synaptic terminals), aggregation of abnormal proteins outside and

inside neurons such as plaques and tangles, reduced neurogenesis and synaptic plasticity, abnormal increase of

astrocytes and oligodendrocytes, altered myelination and reduction of nerve growth factor concentration10–12.
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The effects of age on the reduction of the number of neurons in the brain has been under debate, with several

post-mortem human and primate studies supporting the fact that cortical cell count remains unchanged13 and

that neuronal shrinking (rather than cell loss) is the main process underlying brain atrophy. However, at the

macroscopic level, both global and regional atrophies are the best-reported characteristics of the ageing brain,

as supported by several post-mortem and MRI studies. Neuroimaging studies have shown that the overall

brain  volume  varies  with  age  in  an  “inverted-U”  fashion  consisting  of  an  increase  of  about  25%  from

childhood to adolescence, then remaining constant for about three decades to finally decay down to childhood

size  in  late  ages14.  This  pattern  of  age-related  brain  atrophy in  the  elderly  has  been  associated  with  the

deterioration of cognitive performance in the healthy population15. Of note, age-related grey and white matter

brain atrophies are not  homogeneous, with higher atrophy rates observed in white matter  as compared to

cortical grey matter16,17 and regionally, with more prominent atrophy in prefrontal and parietal cortices18–20  and

hippocampus21. In contrast, the volume of the  cerebrospinal space (ventricles, fissures, and sulci) increases

with age16.  

In  line  with  macrostructural  MRI  correlates  of  brain  ageing,  modern  techniques  such  as  diffusion  tensor

imaging (DTI) have facilitated the in-vivo inspection of age-related microstructural changes of the brain 22,23,

supporting histological findings and revealing regional patterns and dynamics of structural connectivity (SC)

degeneration, a phenomenon postulated to lead to cortical disconnection with loss of functional integration of

neurocognitive  networks7,24.  Several  DTI  studies  in  normal  ageing  support  that  white  matter  atrophy  is

associated with a widespread microstructural degeneration of white matter fibers, with changes predominantly

affecting frontal tracts24, and gradually extending to posterior  tracts25, a pattern that inverts the sequence of

myelination  during  early  development  and  supports  the  "last-in-first-out  principle”  for  white  matter

deterioration along the lifespan. 

The development of resting and task-based functional MRI (fMRI) has provided in-vivo functional insights

into the observed age-related atrophy and SC brain disconnection, consistently showing age-related regional

changes in the patterns of brain activation, with decreased activity in the occipital lobe and increased activity

in the frontal lobe across a variety of tasks7. Functional connectivity (FC) studies with resting state fMRI have
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gone a step further demonstrating that ageing not  only induces regional brain activity changes but also a

decrease in functional connectivity of large-scale brain networks, specifically between anterior and posterior

hubs, including superior and middle frontal gyrus, posterior cingulate, middle temporal gyrus, and the superior

parietal region26,27. 

The combination of SC and FC analyses by complex network approaches have led to the conceptualization of

brain networks as a connectome28,29, and its correlates with age and diseases has gained major attention in

fundamental neuroscience30. Complex network approaches have highlighted the key role played by several

network descriptors in ageing and brain diseases, such as network hubness, hub integrity, network modularity

and  hierarchical  organization  of  networks.  In  terms  of  connectome  modularity,  it  has  been  shown  that

functional  network  modularity  (segregation)  decreases  with  age31,32,  a  mechanism supporting  the  loss  of

functional specialization of certain key brain networks known to be involved in the cognitive domains affected

by ageing along the lifespan33. 

Moreover, combined SC and FC analyses have suggested that not only segregation (i.e., network modularity)

decreases with age but integration (i.e.,  node efficiency) increases34 in a counterbalanced manner assuring

network  efficiency  along  lifespan.  Others,  however,  have  suggested  that  small-worldness  and  network

modularity remain stable along the lifespan, despite a considerable reduction in streamline number 35. Analyses

of longitudinal data showed that age variations affecting FC did not correspond with the variations in SC 36,

highlighting that FC and SC were affected by age in a more independent manner than previously thought.

Conversely, the age variations in FC and SC between areas participating in the DMN were highly correlated

with each other. 

The  combined FC and SC analysis  also  revealed  the  key  role  of  structural  deterioration  of  the  cortical-

subcortical connections in the integration of several resting state networks and performance on cognitive tasks,

such as  those involving executive functions,  processing speed and memory37.  By calculating node-degree

distributions, other studies have shown a reduction with age in the connectivity degree of network hubs 38,

5

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/183939doi: bioRxiv preprint first posted online Sep. 4, 2017; 

http://dx.doi.org/10.1101/183939


supporting the theory that the alteration of network hubs underlies brain physiological ageing as well as a

plethora of different brain pathologies30. 

Recently, new computational strategies for analysing the dynamics of brain atrophy (such as machine learning)

have introduced the concept of brain-predicted ageing, which facilitates the quantification of the mismatch

between age-related brain atrophy and ChA. Deviations of brain-predicted ageing from healthy brain ageing

have been described for several brain diseases, including traumatic brain injury39, mild cognitive impairment

and Alzheimer’s disease40, HIV infection41 and schizophrenia42. A critical issue in the study of brain biological

ageing by computational neuroimaging is the selection of an adequate approach with the highest robustness

and precision for the quantification of the mismatch between chronological and brain biological ages. The

combined rather than separate analysis of SC and FC has shown to provide a better estimation of ChA43. 

In line with this effort to improve ChA estimation approaches of SC and FC connectivity analyses, it is also of

major importance to consider the role of potential epigenetic and environmental modulators of brain biological

ageing on MRI derived measures. We focus here on physical activity (PA), that has been shown to  reduce

disability44, morbidity45,46 and mortality47–49. Regarding the effects of PA on brain biological functioning, it has

been demonstrated in animal models that PA has a beneficial  effect  on  learning and memory function by

inducing neuroprotection,  decreasing oxidative stress and increasing cerebral blood perfusion, which in turn

influence angiogenesis, synaptogenesis and neurogenesis to eventually lead to memory improvement detected

at the behavioral level50.

Although previous publications have addressed the study of brain ageing and the estimation of ChA by means

of separate or combined analyses of SC and FC, none of the latter studies has proposed an optimal method

that,  applying complex network analysis of the structural-functional connectome, simultaneously identifies

age-related brain changes and estimates brain age, considering the effect of potential key modulators of brain

ageing such as PA. 
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In the present study, we have to key hypotheses; first, that the estimation of age is improved by combining FC

and SC descriptors, and second, that higher and lower levels of PA might be associated with younger and older

biological age, respectively. To test these hypotheses, following previous  work39–41,51–59,  we built  an ageing

data-driven model to estimate the ChA of participants based on SC and FC biomarkers and investigated the ex-

tent to which the level of PA mediates the participant’s brain biological age. Lastly, we discuss the general im-

plications and applications of the described methodology.

Material and Methods

Participants

Participants were recruited in the vicinity of Leuven and Hasselt (Belgium) from the general population by

advertisements on websites, announcements at meetings and provision of flyers at visits of organizations and

public gatherings (PI: Stephan Swinnen). A sample of N=155 healthy volunteers (81 females) ranging in age

from 10 to 80 years (mean age 44.4 years, SD  22.1 years) participated in the study. All participants were right-

handed,  as  verified  by  the  Edinburgh  Handedness  Inventory.  None  of  the  participants  had  a  history  of

ophthalmological,  neurological,  psychiatric  or  cardiovascular  diseases  potentially  influencing  imaging  or

clinical measures. Informed consent was obtained before testing. The study was approved by the local ethics

committee for biomedical research, and was performed in accordance with the Declaration of Helsinki.

Physical activity score

Physical activity (PA) was assessed using the International Physical Activity Questionnaire 60 (IPAQ), which

assesses PA undertaken across leisure time, domestic and gardening activities, and work-related and transport-

related  activities.  The  specific  types  of  activity  were  classified  into  three  categories:  walking,  moderate-

intensity activities, and vigorous-intensity activities. Frequency (days per week) and duration (time per day)

were collected separately for each specific activity category. The total score used to describe PA was computed

7

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/183939doi: bioRxiv preprint first posted online Sep. 4, 2017; 

http://dx.doi.org/10.1101/183939


as the weighted summation of the duration (in minutes) and frequency (days) for walking, moderate-intensity,

and vigorous-intensity activity. Each type of activity was weighted by its  energy requirements defined in

Metabolic Equivalent of Task (MET): 3.3 METs for walking, 4.0 METs for moderate physical activity, and 8.0

METs for vigorous physical activity61.

Imaging acquisition

Magnetic resonance imaging (MRI) scanning was performed on a Siemens 3T Magnetom Trio MRI scanner

with a 12-channel matrix head coil. 

Anatomical  data: A  high  resolution  T1  image  was  acquired  with  a  3D  magnetization  prepared  rapid

acquisition gradient echo (MPRAGE): repetition time [TR] = 2300 ms, echo time [TE] = 2.98 ms, voxel size =

1 × 1 × 1.1mm3, slice thickness = 1.1 mm, field of view [FOV] = 256 × 240mm2, 160 contiguous sagittal slices

covering the entire brain and brainstem. 

Diffusion Tensor Imaging:  A DTI  SE-EPI (diffusion weighted single  shot  spin-echo echo-planar  imaging)

sequence was acquired with the following parameters: [TR] = 8000 ms, [TE] = 91 ms, voxel size = 2.2 × 2.2 ×

2.2 mm3, slice thickness = 2.2 mm, [FOV] = 212 × 212 mm2, 60 contiguous sagittal slices covering the entire

brain and brainstem. A diffusion gradient was applied along 64 non-collinear directions with a b value of 1000

s/mm2. Additionally, one set of images was acquired without diffusion weighting (b= 0 s/mm2). 

Resting state functional data was acquired over a 10 minute session using the following parameters: 200

whole-brain gradient echo echo-planar images with [TR/TE] = 3000/30 ms, [FOV] = 230 × 230mm2, voxel

size  = 2.5  ×  2.5  ×  3.1mm3,  80  ×  80 matrix,  slice  thickness  = 2.8 mm, 50 sagittal  slices,  interleaved in

descending order. 

8

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/183939doi: bioRxiv preprint first posted online Sep. 4, 2017; 

http://dx.doi.org/10.1101/183939


Imaging preprocessing

Diffusion Tensor Imaging:  We applied DTI preprocessing similar to previous work62–66 using FSL (FMRIB

Software Library v5.0) and the Diffusion Toolkit. First, an eddy current correction was applied to overcome

the artefacts produced by variation in the direction of the gradient fields of the MR scanner, together with the

artefacts produced by head motion. To ensure that correlations with age were not due to differences in head

motion (ie., to correct for the effect that older people move more), the average motion of each participant was

used as a covariate of non-interest in the statistical analyses. In particular, the participant’s head motion was

extracted from the  transformation  applied at  the  eddy current  correction  step,  from every  volume to the

reference volume (the  first  volume,  b=0).  The motion  information  was also used to  correct  the  gradient

directions prior to the tensor estimation. Next, using the corrected data, a local fitting of the diffusion tensor

was applied to compute the diffusion tensor model for each voxel. Next, a Fiber Assignment by Continuous

Tracking  (FACT)  algorithm  was  applied67.  We  then  computed  the  transformation  from  the  Montreal

Neurological  Institute  (MNI)  space  to  the  individual-participant  diffusion  space  and  projected  a  high

resolution functional partition to the latter, composed of 2514 regions and generated after applying spatially

constrained clustering to the functional  data68.  This allowed building 2514 x 2514 SC matrices,  each per

participant, by counting the number of white matter streamlines connecting all region pairs within the entire

2514 regions dataset. Thus, the element matrix (i,j) of SC is given by the streamlines number between regions

i and j. SC is a symmetric matrix, where connectivity from i to j is equal to that from j to i.  Exclusion criteria

was based on not having the average head motion higher than the mean + 2 standard deviation. None of the

participants were excluded based on this constraint. 

Functional  MRI: We applied resting fMRI preprocessing similar to previous work62–64,66,69,70   using FSL and

AFNI (http://afni.nimh.nih.gov/afni/). First, slice-time correction was applied to the fMRI dataset. Then each

volume was aligned to the middle volume to correct for head motion artefacts. Next, all voxels were spatially

smoothed with a 6 mm full width at half maximum (FWHM) isotropic Gaussian kernel and after intensity

normalization, a band pass filter was applied between 0.01 and 0.08 Hz71 followed by the removal of linear

and quadratic trends. We next regressed out the motion time courses, the average cerebrospinal fluid (CSF)
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signal, the average white-matter signal and the average global signal. Finally, the functional data was spatially

normalized to  the  MNI152 brain template,  with a  voxel  size  of  3*3*3 mm 3.  In  addition to  head motion

correction, we performed scrubbing, by which time points with framewise displacement higher than 0.5 were

interpolated by a cubic spline72. Further, to correlate with age, we also removed the effect of head motion by

using the global  frame displacement as a non-interest  covariate,  as old participants moved more than the

young, and this fact introduced trivial correlations with age. Finally, FC matrices were calculated by obtaining

the pairwise Pearson correlation coefficient between the resting fMRI time series. Exclusion criteria was based

on not  having more than 20% of  the  time points  with a  frame wise  displacement  greater  than 0.5.  Two

participants were finally excluded.   

Brain Hierarchical Atlas   (BHA) and its robustness along lifespan

The aforementioned 2514 brain regions were grouped into modules using the Brain Hierarchical Atlas (BHA),

recently developed64 and applied by the authors in a traumatic brain injury study66. The BHA is available to

download  at  http://www.nitrc.org/projects/biocr_hcatlas/  . A  new  Python  version  was  developed  during

Brainhack Global 2017 - Bilbao can be downloading at github, to be amended before submission

The use of the BHA guarantees two conditions simultaneously: 1) That the dynamics of voxels belonging to

the same module is very similar, and 2) that the voxels belonging to the same module are structurally wired by

white matter streamlines; see in figure 1 the high correspondence between SC and FC modules. The BHA

provides a multi-scale brain partition, where the highest dendrogram level  M=1 corresponded to all  2514

regions belonging to a single module, coincident with the entire brain, whereas the lowest level  M=2514

corresponded to 2514 separated modules, all of them composed of only one region.  

It was also shown  in64 that the hierarchical brain partition with M = 20 modules was optimal based on the

cross-modularity  index X. This  index was defined as  the geometric mean between the modularity of  the

10

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/183939doi: bioRxiv preprint first posted online Sep. 4, 2017; 

http://www.nitrc.org/projects/biocr_hcatlas/
http://dx.doi.org/10.1101/183939


structural  partition (Qs),  the modularity of the functional partition (QF),  and the mean Sorensen similarity

between modules existing in the two structural and functional partitions (LSF). 

Labelling of anatomical regions  

The anatomical representation of the 2514 brain regions were identified by using the Automated Anatomical

Labelling73 (AAL) brain atlas. Therefore, the anatomical identification of the brain regions used in this work

follow the labels appearing in the AAL atlas.  

Removal of regions affected by the increment of ventricular space along lifespan

Ventricular space increases along the lifespan in a manner that, after transforming all images to a common

space,  some  regions  surrounding  the  ventricular  space  for  the  younger  population  are  occupied  by  the

ventricular  space of  older  participants.  In order  to remove this effect,  we deleted these regions by (after

projecting all images to the common space) searching for the participant with the highest ventricular volume,

segmenting this space and treating it as mask to discard (for the connectivity analysis) all the regions within

this space in all the participants.  Figure 1a illustrates this procedure.  

Structure-function correlo-dendrograms of brain ageing

From both  SC and FC matrices,  we  built  the  correlo-dendrogram (CDG)  of  brain  ageing  by  correlating

chronological age with the values of internal (intra-module) and external (inter-module) connectivity for each

dendrogram level M of the BHA. In particular, four different classes of module descriptors were built per

participant: functional internal connectivity (FIC), functional external connectivity (FEC), structural internal

connectivity (SIC), and structural external connectivity (SEC) (figure 2). Given a brain module composed by a

set of R regions, its associated FIC  (SIC) was calculated as the sum of the functional (structural) weights of

all the links between the elements of R, whilst FEC (SEC) was defined as the sum of the functional (structural)

weights of all the links connecting the elements of R to other regions in the brain.
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One of the peculiarities of the BHA is that at each M level only one of the branches of the hierarchical tree

divides in two, so at each level only 2 modules are new with respect to the (M-1) level (figure 2). Considering

this characteristic and the fact that we started our analysis at the level of M=20 and arrived up to M=1000, we

established the Bonferroni significance threshold equal to  0.05/ [20+2∗ (1000−20 ) ]  for the correlation

between age and connectome measures (FIC, SIC, FEC, SEC).

To localize age-affected brain areas at both functional and structural levels (rather than separate FC or SC

analyses),  and thus obtaining a major benefit  from the combination of functional  and structural  data,  we

searched for  brain  regions such that  the  p-value was  smaller  than  the square  root  of  the  product  of  the

individual structural p-value multiplied by the individual functional one. The value of the structure-function

age correlation was calculated as the geometric mean of the two correlation values,  one achieved by the

functional descriptor and the other by the structural one.  

A  Python  pipeline  implementing  this  strategy  can  be  downloaded  at  github,  to  be  amended  before

submission 

Maximum likelihood estimator (MLE) 

Let us define for each participant  n  the vector  xn≡ (1x1
n x2

n⋯ xK− 1
n )

T
  of  n components, each one

corresponding to a different connectivity descriptor (in principle any value of inter/intra module connectivity

at any M level of the BHA calculated from either FC or SC), where T  denotes the transpose operator. The

estimated age for participant n was calculated by a linear combination of the descriptors, ie.,

t n=ω0+∑
j=1

K− 1

ω j x j
n+ϵn  , (Eq. 1)
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where εn  is a zero mean Gaussian random variable with variance σ2  and ω≡ (ω0ω1ω2⋯ωK−1 )
T

is

the weight vector.  For P  different participants, using eq. (1), one can define the error function as 

E (ω)=
1
2
∑
n=1

P

{t n−ω0−∑
j=1

K− 1

ω j x j
n}

2

, (Eq. 2)

which allows to calculate the weight vector that minimizes the error function, that is, which is solution of

∇ωE (ω )=0  (first derivative with respect to ω  equal to zero). Such a minimum defines precisely the

Maximum Likelihood Estimator (MLE), which can be analytically solved74,75 and is given by:

wMLE
=(φT φ )

− 1
φT t (Eq. 3)

where -1 denotes the inverse of the matrix, t ≡ ( t1 t2 t3⋯t P )
T

 is the vector of P age-participant estimations

and φ  is the so-called design matrix, ie.,

φ≡(
1x1

1 x2
1⋯xK −1

1

1x1
2 x2

2⋯xK −1
2

⋮
1x1

P x2
P⋯ xK− 1

P ) . (Eq. 4)

Mean absolute error (MAE) and brain connectome age (BCA)

When the entire dataset is used to calculate wMLE , increasing the number of descriptors the error estimation

function decreases (the more descriptors, the better the estimation), but this strategy also provides a very high

variance estimate, meaning that, when estimating the age using the wMLE  solution in a different dataset can

produce a very high error. Splitting the entire dataset in training and testing sets solves this problem, well

known as overfitting76. 
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To calculate the MAE, for each experiment we performed data splitting, by randomly choosing 75% of the

dataset (N1=115) for training (i.e., for calculating the wMLE solution) and the remaining 25% (N2=38) for

testing (i.e., to calculate the MAE). As a metric for estimation quality, the MAE in the testing dataset was

calculated as

MAE ( K )=
1
N2

∑
n=1

N2

|ChA n−BCAn ( K )| , (Eq. 5)

where  ||  denotes  absolute  error  and  where  we  have  defined  the  brain  connectome  age  (BCA)  for

participant n  as

 BCA n ( K ) ≡ω0
MLE

+∑
j=1

K −1

ω j
MLE x j

n ,     (Eq. 6)

where wMLE  has been defined in Eqs. (3) and (4).

Remark that  although in principle there were many potential descriptors (four classes --FIC, FEC, SIC and

SEC--  per  module  and  number  of  modules  M varying  from 20  to  1000),  finally  only  K of  them were

introduced into the MLE to estimate age. Therefore, and by construction, the MLE solution depends on K (see

next subsection for the choice for the K descriptors).

Optimization of the maximum likelihood estimation (MLE)

In order to get  the best model, ie. the K descriptors that better estimate age, we optimized the MLE in the

following way:

1. For K=1, we considered the descriptor that best correlated with ChA. 

2. The K=2 descriptor was chosen among all the remaining ones by finding the descriptor such that

after U=100 experiments of randomly choosing 75% of the dataset for training and 25% for testing,
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the mean MAE achieved by the two descriptors (the one found in stage 1 plus the new one) was

minimal.  

3. The K=3 descriptor was chosen among all the remaining ones by finding the descriptor such that

after U=100 experiments of randomly choosing 75% of the dataset for training and 25% for testing,

the mean MAE calculated with three descriptors (the previous two descriptors found in stage 2 plus

the new one) was minimal.

4. Following this strategy, the curve MAE(K) has a minimum value as K increases, that defined the

best model which has K descriptors.

This age estimation strategy has been implemented using scikit-learn, http://scikit-learn.org/stable/. The entire

code can be downloaded at github , to be amended before submission

Results

A population of N=155 healthy participants (81 female, 74 male) with age varying from 10 to 80 years (mean=

44, standard deviation=22) was used for the study. Together with physical activity scores, triple acquisitions

including anatomical, diffusion tensor and resting functional imaging were acquired for each participant.

We used the BHA Brain Hierarchical Atlas (BHA, see64 and Methods) with 2514 regions and calculated for

each participant the weighted SC and FC connectivity matrices, representing respectively the region-pairwise

streamline number and the region-pairwise Pearson correlation of resting-state activity time series.

We first verified the robustness of the BHA across lifespan. Figure 1 shows for two populations, one young

(age < 25.1 y, N=54 participants) and other old (age > 61.9 y, N=54 participants), that the correspondence

between SC modules and FC modules was preserved independently of participant age. This was quantified by

assessing cross-modularity (X), obtaining X = 0.312 for the young population and X = 0.309 for the old, and

therefore showing that cross-modularity was 99% preserved along the lifespan.
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Next, we calculated for all  levels M of the BHA (with 20<=M<=1000), four different module descriptors

(figure 2): 1) the functional internal connectivity (FIC), 2) the functional external connectivity (FEC), 3) the

structural  internal  connectivity  (SIC)  and 4)  the  structural  external  connectivity  (SEC),  that  we  used  for

building  the  correlo-dendrograms  (CDG)  that  allowed  to  find  the  highest  correlation  between  module

connectivity and ChA, whilst maximizing the spatial resolution. 

Figure 3 shows the structure-function CDGs, calculated as the geometric mean between the correlation value

obtained  from the  functional  descriptor  and  the  correlation  value  obtained  from the  structural  one.  This

allowed  building  one  CDG  based  on  external  structure-function  connectivity  (figure  3a,  associated  to

connections with longer fiber length) and a different one based on internal structure-function connectivity

(figure 3b, associated to connections with shorter fiber length).   Brain maps from the external CDG (figure

3a) and the internal CDG (figure 3b) were built assigning to each brain region the maximum absolute value of

structural-functional correlation across all BHA levels.

With regard to external connectivity (figure 3a), maximum age correlations were found bilaterally in several

cortical and subcortical AAL regions: the frontal superior and middle, cingulum middle, parahippocampus,

calcarine,  cuneus, lingual, occipital superior,  middle and inferior,   fusiform,  precuneus,  caudate,  putamen,

thalamus,  temporal pole middle and temporal inferior.  

With regard to  internal  connectivity (figure  3b),  maximum age correlations  were found bilaterally  in  the

insula, cingulum anterior, calcarine, cuneus, occipital superior, middle and inferior, fusiform, parietal superior,

angular, precuneus, thalamus, temporal middle and inferior and cerebellum. 

Since the structure-function CDG does not provide any information on the individual contribution that either

the structural or the functional descriptor has on the correlation value, we separated all possible four cases of

combined correlations  (increased  structural  and  functional;  decreased  structural  and  functional;  increased

structural  and  decreased  functional;  decreased  structural  and  increased  functional)  and  reported  them

separately in figure 4. 
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The external connectivity analysis identified brain regions with opposing tendencies by which the structural

connectivity decreased with age whilst  the functional  connectivity increased (figure 4a,  blue rectangle),  a

mechanism representing network homeostasis. These regions were found bilaterally in the frontal superior and

middle, calcarine, cuneus, lingual, occipital superior, middle and inferior and precuneus. Regions for which

both  structural  and  functional  connectivities  decreased  with  age  (figure  4a,  green  rectangle)  were  found

bilaterally  in  the  parahippocampus,  fusiform,  caudate,  putamen,  thalamus  and  temporal  pole  middle  and

inferior. 

The  internal  connectivity  analysis  did  not  identify  any  brain  region  in  which  the  structural  connectivity

decreased  with  age  and the  functional  one  increased  (figure  4b,  blue  rectangle),  indicating  that  network

homeostasis only  was  appreciated  when looking to  external  connectivity  patterns.    Regions  where both

structural and functional connectivity decreased with age (figure 4b, green rectangle) were found in the insula,

cingulum anterior (the anterior part of the default mode network), calcarine, cuneus, occipital superior, middle

and inferior, fusiform, parietal superior, angular, precuneus, temporal middle and inferior and the cerebellum. 

Next,  we  made  use  of  the  MLE to  calculate  BCA.  We first  pooled  into  a  common list  the  four  set  of

connectivity descriptors (FIC, FEC,  SIC, SEC) and ordered them descendant in age correlation (that is, the

first elements in the list were the descriptors that most correlated with age). By simply increasing the number

of descriptors into the MLE, the correlation between ChA and BCA monotonously increased with age (figure

5a), that is, the more descriptors incorporated into the MLE the better the age estimation. This   overfitting was

resolved by splitting the entire dataset in two pieces, 75% of the dataset used for training (to calculate the

MLE solution)  and the  remaining  25% used  for  testing  (to  calculate  the  MAE).  By adding  one  by  one

descriptors each time and optimizing the regression performance (see Method), the best model in estimating

age occurred for  K=38 descriptors, which provided a minimum mean MAE value (after U=100 repetition

experiments) equal to 5.89 years (figure 5b). When calculating MLE using these K=38 best descriptors, the

graphical  representation  of  ChA as  a  function  of  BCA showed  an  excellent  correspondence  (figure  5c,

correlation=0.95, p-value<10-20).   
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Next, we obtained brain maps of the best K=38 descriptors (figure 5e). Because by construction of our model

each of the 2514 regions might participate in four different classes of descriptors (FIC, FEC, SIC, SEC), we

plotted each region according its  Age Participation Index (API),  an integer number between 0 and 4 and

indicating with how many of the four classes a specific brain region contributed to the age estimator model. 

Regions with API equal  to 1 were found bilaterally in the frontal  superior, insula,  cingulum anterior and

middle, hippocampus, parahippocampus, calcarine, cuneus,  lingual,  occipital superior, middle and inferior,

fusiform, precuneus, thalamus, temporal middle and inferior and temporal pole middle. Regions with API

equal to 2 were found bilaterally in the parahippocampus, fusiform, caudate, putamen, thalamus, temporal pole

middle and temporal inferior. Finally, regions with API equal to 3, and therefore, the regions with a major

correlate of physiological ageing were found in the connectivity of basal ganglia (caudate, putamen, pallidum)

and thalamus.  

Next, we looked into the networks that starting from regions with API=3 were connected to the rest of the

brain.   These  regions  were  connected  functionally  and  bilaterally  to  orbitofrontal  (superior,  middle  and

inferior), middle frontal, olfactory, gyrus rectus, cingulum (anterior, middle and posterior), calcarine, occipital

middle, fusiform, precuneus, temporal middle and cerebellum. Structurally, these regions were inter-connected

and also with the insula. Finally, regions with API=3 (including part of the caudate, putamen, pallidum and

thalamus) were structurally-functionally connected to the orbitofrontal cortex and to the inferior and middle

frontal gyri (figure 5f). The volume values within each brain structure participating in this circuit together with

the connectivity values (link strength) between these structures are given in Table 1.

We finally asked whether physical activity (PA) can in any manner modulate BCA (ie., if PA can modify the

brain’s structural-functional wiring in a manner that  age estimation has a systematic bias).  To provide an

answer to that question, we compared the estimation error (defined as ChA minus BCA) in two groups, one

group with high values of PA (90th percentile) and another one with low values of PA (10 th percentile, figure

5d). By building the MLE with the best K=38 descriptors, we obtained a mean estimation error of -3.2 years

(SD=-3.7) for the low PA group, and of 1.33 years (SD=4.94) for the group with high PA. The estimation error

18

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/183939doi: bioRxiv preprint first posted online Sep. 4, 2017; 

http://dx.doi.org/10.1101/183939


was  significantly  different  in  the  two  groups  (p-value=0.02  after  a  Kolmogorov–Smirnov  test),  and  this

occurred independently of ChA, as the correlation value between the estimation error and age was -0.05  (p-

value=0.88) for the group with high PA and 0.39 (p-value=0.23) for the group of low PA.

Discussion

The chronological age (ChA) differs from the biological one. Whilst the former is defined as the time running

since birth, the latter quantifies the maturity level that an individual (or an organ) has at the operational level.

In relation with the brain, the discrepancy between the brain age and ChA might constitute a biomarker for

quantifying deterioration as a result of disease or improvement after some treatment or therapy, which has

unlimited applications.  Here,  we  asked whether  the  brain age  could be  determined exclusively  based on

structure-function connectivity descriptors, coined as brain-connectome age (BCA). Therefore, we did not take

into consideration typical morphological descriptors (such as grey and white matter atrophy or ventricular

volume) that have been widely shown to correlate with ChA. Our results demonstrate that BCA can estimate

ChA with high accuracy, determined by a mean absolute error of 5.89 years in a group of N=155 participants

with  age  ranging  from 10 to  80  years.  Our  results  also  reveal  that  the  basal  ganglia/thalamus  and their

connection with orbitofrontal and frontal areas is the key circuit accounting for brain ageing. Furthermore, we

also report that the level of physical activity (PA) rejuvenates the brain connectome, implying that high-PA

participants have an associated BCA that qualifies them as being younger than low-PA participants. 

Differences between brain age and chronological age by assessing brain morphology

Several studies have assessed discrepancies between brain morphology age and ChA as an estimation of brain

functioning in pathological groups. In relation with mild cognitive impairment (MCI), it was shown that the

brain age could become even 10 years higher than ChA56. In a different study, it was shown that the error in

age estimation predicted the conversion from MCI to Alzheimer’s disease better than any other variable 40, as

compared to imaging morphological variables (such as the volume of subcortical structures), cognitive scales

19

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/183939doi: bioRxiv preprint first posted online Sep. 4, 2017; 

http://dx.doi.org/10.1101/183939


or protein biomarkers in cerebrospinal fluid. One-year bias was associated to 10% higher risk conversion. In

relation  to  other  pathologies,  and  also  using  morphological  descriptors  to  estimate  the  brain  age,  the

differences between brain age and ChA explained for instance brain deterioration from attenuated psychosis to

chronic schizophrenia54,  brain deterioration in patients with  human  immunodeficiency virus41,  accelerated

atrophy after traumatic brain injury39  (suggesting that the chronic effects after the insult can resemble normal

ageing), but also brain rejuvenation after meditation58.

Morphological age-related alterations have been reported in all body organs, such as liver, kidney, heart, lung,

skin, but notably, what makes the brain distinct from other organs is precisely its complex wiring, where short-

range connectivity operates at multiple scales in combination with long range circuitry, allowing the two main

brain functional principles of segregation and integration77 to work in harmony. Therefore, the BCA model

presented in this work provide a new complementary and fundamental approach within the above framework,

being fully  centred on the multi-scale  organization of  the  brain circuitries/networks,  therefore  correlating

ageing with lower and higher brain functions.

Differences between brain age and chronological age by assessing brain connectivity: The importance of

combining SC and FC 

Only very few studies have made use of connectivity metrics for age estimation, but none of them combined

SC  and  FC  metrics  to  perform  the  estimation.  By  combining  morphological  descriptors  together  with

functional connectivity ones, Liem et al (2017) were able to improve age estimation up to 4.29 years53. In

relation to connectivity metrics, it was shown in a seminal study that resting FC descriptors estimated brain

age51, but rather than addressing physiological ageing, the authors focused on neural development in the age

range between 7 and 30 years.  By using only structural networks, but not functional data, it was shown that a

simple metrics such as the sum of all connectivity links (ie., streamline number)  weighted by the age-link

correlation, estimated ChA with high precision52 in healthy participants aged 4 to 85 years. 
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By combining  both  SC and FC descriptors  in  the  present  study, we  have  achieved a  high  performance,

quantified by a MAE equal to 5.89 years. To the best of our knowledge, such an approach has never been

reported  before  in  the  context  of  age-estimation.  When  repeating  the  entire  procedure  using  only  SC

descriptors, the performance was worse (MAE=8.1 years). Analogously, when using only FC descriptors, the

performance was also worse (MAE=8.45 years).  

Our results not only point out the relation between BCA and the aging process, but also highlight how the

wiring and the dynamics of the brain networks cannot be disentangled without losing the emergent synergetic

picture of their operational complexity. Indeed, when looking solely at function, as it happens in task fMRI, a

distinct  scenario  emerges,  the  so-called  frontal  super-activation,  where  younger  people  exhibit  no  or

lateralized frontal activation when performing the task, while older people incorporate unilateral or bilateral

frontal cortex activation78. Our BCA model, although obtained when the brain is at rest, extends task-related

studies, revealing that the fronto-subcortical (striatum and thalamus) complex is the primary circuit critically

accounting for the functional age-deterioration. Indeed, the key element is that the multi-scale modular BCA

approach used in this work perfectly preserves the intrinsic link between structure and function. In fact, the

resting activity is shaped by modular organization, where the structural and functional architecture clearly

merge and match each other64. Therefore the multi-scale modular BCA approach used in this work perfectly

preserves the intrinsic link between structure and function. 

The  structure-function  connectivity  between  subcortical  areas  (striatum  and  thalamus)  and

frontal/orbitofrontal cortex, mediating cognitive control functions, is the principal determinant of brain

ageing

Several studies have shown that the connectivity profile of the basal ganglia (BG) and thalamus is affected by

ageing and correlates with age-related neuropsychological decay. For example, a reduction in thalamic volume

along the lifespan has been associated with age-related sensorimotor performance deterioration 79. Beyond the

classical relation to motor function80, there is nowadays mounting evidence to associate the BG decline with
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executive function deficits along the lifespan, such as motor switching81 and inhibitory control82,83, but also in

motor learning84, whereby  older adults perform worse than young. The status of connectivity between the

thalamus  and  BG,  by  means  of  the  fronto-striato-thalamic  (FST)  circuit,  has  been  associated  with  task-

switching performance85–88 which measures the suppression of certain actions to flexibly adapt to new different

ones. These so-called cognitive control functions are altered along the lifespan7. On top of these results, and

without a priori assuming the participation of these regions, we have provided quantitative evidence that the

FST circuit delivers the major contribution for age estimation. 

Effects of physical activity on the brain connectome age

As far as we know, our study is the first one demonstrating that physical activity (PA) can rewire the human

connectome to increase its resilience by slowing down brain ageing. In relation to brain morphology, it has

been shown57  that none of the following activities have a strong implication in the estimation of brain age:

walking/hiking, jogging, running, bicycling, aerobic exercise, lap swimming, tennis/squash/racquetball or low

intensity exercise, but  in addition, the same authors showed a small association between brain age and a

variable  named  “daily  number  of  flights  of  stairs  climbed”.  Here,  by  only  looking  to  structure-function

connectivity descriptors rather than morphological variations, we showed strong evidence between PA and

ChA estimation. Notably, and distinct from previous work57, our methodology does not need to disentangle

which specific type of physical exercise significantly impacts brain aging, although it has the potentiality.

A novel methodology to quantify the structure-function brain connectivity impact of therapies, diseases

and lifestyles 

The novelty of our approach is based on identifying, on a multi-scale level, brain modules whose connectivity

correlate  structurally  and functionally  with  age.  The  significant  descriptors  are  then  pooled  to  create  an

optimized linear regression model  capable to assess the biological  brain age of a given connectome with
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minimal  error.  Such  a  methodology  opens  two  important  and  different  perspectives.  First,  it  provides  a

quantitative approach to assess the impact of therapies on biological brain ageing (ideally rejuvenating the

brain  connectome),  diseases  (accelerating  the  connectome  ageing)  and  other  factors  shaping  lifestyle.

Secondly, the same methodology can be used to correlate any graded variable (not only age) to the brain

connectome, allowing for brain-connectome estimators of any other biomarker. In this framework, a biomarker

would be any functional, structural or behavioural score measured in participants, and the brain-connectome

linear model developed in this work will be first used to fit participant scores and next, to estimate new single

subject scores.  Lastly, our method makes use of network node metrics to estimate brain age, but this method

can also be extended to network link level,  thus  identifying specific  pathways rather  than brain regions,

provided a large cohort is available to control for multiple comparisons (as a given connectome has N nodes

and N2 links).  

Summary 

We have shown that the chronological age can be estimated from the structural-functional connectome with a

much higher  accuracy  than  structural  or  functional  connectivity  separately. Using  the  mismatch  between

chronological and brain age might be useful for quantifying the brain’s deterioration or reorganization after

new  treatments,  implying  a  multitude  of  meaningful  applications.  In  particular,  we  have  shown  that

participants who exhibit  higher levels of physical activity have a brain connectome age that appears younger

than the chronological one, but also that low levels of physical activity increase the brain connectome age.

Therefore,  our results  demonstrate that  physical  activity  makes the brain more resilient  by slowing brain

ageing. By using a blind approach in which no brain structures were a priori assumed to be affected by ageing,

our method has shown that  the connectivity of the fronto/orbitofrontal-striato-thalamic circuit  is  critically

important for brain ageing, consistent with previous work associating this circuit to age-related deterioration of

cognitive control of action.
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Table 1

Structure-function connectivity from basal ganglia and thalamus to orbitofrontal and frontal areas is

the key circuit for brain ageing. Volume sizes within each region participating in this network together with

link  strength   (ie.  structure-function  significant  correlation  value)  between pair  regions.  X represents  no

existing links.

Thalamus

(2970 mm³)

Middle Frontal
Gyrus

(16443 mm³)

Basal Ganglia

(2727 mm³)

Inferior Frontal
Gyrus

(3942 mm³)

Orbitofrontal
Cortex

(8100 mm³)

Thalamus

(2970 mm³)

x 0.238 x x x

Middle Frontal
Gyrus

(16443 mm³)

0.238 X x x x

Basal Ganglia x X x 0.285 0.27
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List of Captions

Figure 1: Robustness of the Brain Hierarchical Atlas along lifespan. a: Common template normalization

(middle) for young (top) and old brains (bottom). Ventricle 3D segmentation has been performed for a young

(17 y, filled in blue) and old participant (72y, contours marked in red). Both segmentations are superimposed

onto the common population template (middle row). For the connectivity analysis, regions located within the

volume defined by the biggest ventricle size across all the participants have been ignored to correct for trivial

age-effects in the results of age estimation (i.e., to correct for the effect that older people have bigger ventricle

volume). b: Brain hierarchical atlas (BHA) parcellation for young (top) and old (bottom) populations shows

the strong correspondence between functional modules (depicted as yellow squares in the matrix diagonal of

the functional connectivity matrix, FC ) and structural modules (plotted in the SC matrix). FC and SC matrices

are the result of averaging FC and SC individual matrices in two different populations, young (age < 25.1 y,

N=54  participants) and old (age > 61.9 y, N=54  participants). Both connectivity FC and SC matrices have

been reordered according to the BHA (here represented at the level of M=20 modules).  FC is defined by the

pairwise Pearson correlation between rs-fMRI time series whilst  SC is defined by the streamline counting

between region pairs (here binarized just for illustration purposes).
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Figure 2: Schematic representation of brain connectivity descriptors. Left-top:  First,  we made use of

BHA to  define  different  modules  resulting  from a  hierarchical  agglomerative  clustering.  Right-top: The

multiscale  brain  partition  shows  how  modules  divide  when  going  down  along  the  tree  (here,  we  only

considered the part of the tree that goes from 20 to 120 modules). The gray-colored modules represents the

M=20 brain  partition.  Bottom: For  the  tree  level  of  M=20 and  for  each  participant,  we  calculated  the

structural/functional internal connectivity (green rectangle) and structural/functional external connectivity (red

rectangle), by summing respectively the edge weights within and leaving out that module. The same procedure

was applied for all the modules in all the 20<=M<=1000 levels of the tree.

Figure  3.  Structure-function  correlo-dendrogram  (CDG)  and  structure-function  brain  maps  of  age

correlation across the multi-scale brain partition. To build structure-function age CDGs, we calculated for

each module appearing in the BHA partition (20<=M<=1000) the correlation (and associated p-value) between

age participant and FEC, FIC, SEC and SIC.  a: Brain regions with external connectivity affected by age. 3D

brains show per each of the 2514 regions, the value of maximum correlation achieved by that region among all

values in the CDG  (illustrated here with an arrow). A zoomed inset of the CDG is reported on the top right,

showing how module division affects the correlation with age.  b: Similar to panel a, but for age correlation

with respect to internal connectivity.

Figure 4. Functional connectivity modulation along lifespan.   SC decreased with age, but FC might either

increase (rectangle with solid blue line) or decrease (rectangle with dashed green line), and this occurred for

both external connectivity descriptors (panel a) and internal connectivity descriptors (panel b). Notice that the

situation of FC increasing and SC decreasing did not exist with regard to internal connectivity. As in figure 3,

all  the  non-zero  correlation  values  plotted  here  were  statistically  significant  (after  multiple-comparison

correction).
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Figure 5:  Chronological  age (ChA)  vs  Brain-connectome age  and its  modulation by the amount  of

physical activity. a: Correlation between ChA and BCA as a function of the number of descriptors (K), when

the entire dataset has been used for training (methods). Notice that, the larger number of descriptors, the higher

the correlation. However, this strategy is well known to produce overfitting. In blue, we colored results from

real data, and in orange, we plotted the results after shuffling the age vector a number of U=100 experiments,

which provides the null-distribution (here represented the mean ± SD).  b: Mean absolute error (MAE) as a

function of K, using 75% of the dataset for training and 25% for testing. The minimum MAE, corresponding

to 5.89 years provides optimal solution, achieved when K=38 different descriptors have been incorporated into

the maximum likelihood estimator.  Similar to panel a, blue and orange represent respectively real and shuffled

data after Q=100 experiments. c: For a single estimate (chosen to have a similar MAE as the  average one over

the 100 experiments), we plot ChA (in years) as a function of the BCA (here, equal to the MLE solution with

the best K=38 best connectivity descriptors), which provides a correlation value of 0.95 (p<2E-20).  d:  Age

estimation error (defined as  ChA minus BCA) for two groups of participants, one performing high physical

activity (PA), and a different one with low PA values. e: Brain maps of the K=38 best descriptors. Color bar

indicates  age participation index (API),  accounting for  how many times one brain region is  significantly

correlated with age in relation to any of the four following categories: SEC, SIC, FEC and FIC. Basal ganglia

and thalamus are the brain structures whose connectivity participates most prominently in ageing.  f: Basal

ganglia and thalamus connect according to a structure-function manner  to the inferior and middle frontal gyri

together with the orbitofrontal cortex, ie. the so called  fronto-striato-thalamic (FST), is the major pathway

participating in brain aging.   Node size is proportional to the volume size of the region that participates in this

network, whereas link thickness is proportional to structure-function correlation values  (Table 1).   
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	Physical activity score
	Imaging acquisition
	Diffusion Tensor Imaging: A DTI SE-EPI (diffusion weighted single shot spin-echo echo-planar imaging) sequence was acquired with the following parameters: [TR] = 8000 ms, [TE] = 91 ms, voxel size = 2.2 × 2.2 × 2.2 mm3, slice thickness = 2.2 mm, [FOV] = 212 × 212 mm2, 60 contiguous sagittal slices covering the entire brain and brainstem. A diffusion gradient was applied along 64 non-collinear directions with a b value of 1000 s/mm2. Additionally, one set of images was acquired without diffusion weighting (b= 0 s/mm2).
	Resting state functional data was acquired over a 10 minute session using the following parameters: 200 whole-brain gradient echo echo-planar images with [TR/TE] = 3000/30 ms, [FOV] = 230 × 230mm2, voxel size = 2.5 × 2.5 × 3.1mm3, 80 × 80 matrix, slice thickness = 2.8 mm, 50 sagittal slices, interleaved in descending order.
	Diffusion Tensor Imaging: We applied DTI preprocessing similar to previous work62–66 using FSL (FMRIB Software Library v5.0) and the Diffusion Toolkit. First, an eddy current correction was applied to overcome the artefacts produced by variation in the direction of the gradient fields of the MR scanner, together with the artefacts produced by head motion. To ensure that correlations with age were not due to differences in head motion (ie., to correct for the effect that older people move more), the average motion of each participant was used as a covariate of non-interest in the statistical analyses. In particular, the participant’s head motion was extracted from the transformation applied at the eddy current correction step, from every volume to the reference volume (the first volume, b=0). The motion information was also used to correct the gradient directions prior to the tensor estimation. Next, using the corrected data, a local fitting of the diffusion tensor was applied to compute the diffusion tensor model for each voxel. Next, a Fiber Assignment by Continuous Tracking (FACT) algorithm was applied67. We then computed the transformation from the Montreal Neurological Institute (MNI) space to the individual-participant diffusion space and projected a high resolution functional partition to the latter, composed of 2514 regions and generated after applying spatially constrained clustering to the functional data68. This allowed building 2514 x 2514 SC matrices, each per participant, by counting the number of white matter streamlines connecting all region pairs within the entire 2514 regions dataset. Thus, the element matrix (i,j) of SC is given by the streamlines number between regions i and j. SC is a symmetric matrix, where connectivity from i to j is equal to that from j to i. Exclusion criteria was based on not having the average head motion higher than the mean + 2 standard deviation. None of the participants were excluded based on this constraint.
	Functional MRI: We applied resting fMRI preprocessing similar to previous work62–64,66,69,70 using FSL and AFNI (http://afni.nimh.nih.gov/afni/). First, slice-time correction was applied to the fMRI dataset. Then each volume was aligned to the middle volume to correct for head motion artefacts. Next, all voxels were spatially smoothed with a 6 mm full width at half maximum (FWHM) isotropic Gaussian kernel and after intensity normalization, a band pass filter was applied between 0.01 and 0.08 Hz71 followed by the removal of linear and quadratic trends. We next regressed out the motion time courses, the average cerebrospinal fluid (CSF) signal, the average white-matter signal and the average global signal. Finally, the functional data was spatially normalized to the MNI152 brain template, with a voxel size of 3*3*3 mm3. In addition to head motion correction, we performed scrubbing, by which time points with framewise displacement higher than 0.5 were interpolated by a cubic spline72. Further, to correlate with age, we also removed the effect of head motion by using the global frame displacement as a non-interest covariate, as old participants moved more than the young, and this fact introduced trivial correlations with age. Finally, FC matrices were calculated by obtaining the pairwise Pearson correlation coefficient between the resting fMRI time series. Exclusion criteria was based on not having more than 20% of the time points with a frame wise displacement greater than 0.5. Two participants were finally excluded.

	Brain Hierarchical Atlas (BHA) and its robustness along lifespan
	The aforementioned 2514 brain regions were grouped into modules using the Brain Hierarchical Atlas (BHA), recently developed64 and applied by the authors in a traumatic brain injury study66. The BHA is available to download at http://www.nitrc.org/projects/biocr_hcatlas/. A new Python version was developed during Brainhack Global 2017 - Bilbao can be downloading at github, to be amended before submission
	The use of the BHA guarantees two conditions simultaneously: 1) That the dynamics of voxels belonging to the same module is very similar, and 2) that the voxels belonging to the same module are structurally wired by white matter streamlines; see in figure 1 the high correspondence between SC and FC modules. The BHA provides a multi-scale brain partition, where the highest dendrogram level M=1 corresponded to all 2514 regions belonging to a single module, coincident with the entire brain, whereas the lowest level M=2514 corresponded to 2514 separated modules, all of them composed of only one region.

	Labelling of anatomical regions
	Removal of regions affected by the increment of ventricular space along lifespan
	Ventricular space increases along the lifespan in a manner that, after transforming all images to a common space, some regions surrounding the ventricular space for the younger population are occupied by the ventricular space of older participants. In order to remove this effect, we deleted these regions by (after projecting all images to the common space) searching for the participant with the highest ventricular volume, segmenting this space and treating it as mask to discard (for the connectivity analysis) all the regions within this space in all the participants. Figure 1a illustrates this procedure.
	Structure-function correlo-dendrograms of brain ageing
	From both SC and FC matrices, we built the correlo-dendrogram (CDG) of brain ageing by correlating chronological age with the values of internal (intra-module) and external (inter-module) connectivity for each dendrogram level M of the BHA. In particular, four different classes of module descriptors were built per participant: functional internal connectivity (FIC), functional external connectivity (FEC), structural internal connectivity (SIC), and structural external connectivity (SEC) (figure 2). Given a brain module composed by a set of R regions, its associated FIC (SIC) was calculated as the sum of the functional (structural) weights of all the links between the elements of R, whilst FEC (SEC) was defined as the sum of the functional (structural) weights of all the links connecting the elements of R to other regions in the brain.
	One of the peculiarities of the BHA is that at each M level only one of the branches of the hierarchical tree divides in two, so at each level only 2 modules are new with respect to the (M-1) level (figure 2). Considering this characteristic and the fact that we started our analysis at the level of M=20 and arrived up to M=1000, we established the Bonferroni significance threshold equal to for the correlation between age and connectome measures (FIC, SIC, FEC, SEC).
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	Figure 1: Robustness of the Brain Hierarchical Atlas along lifespan. a: Common template normalization (middle) for young (top) and old brains (bottom). Ventricle 3D segmentation has been performed for a young (17 y, filled in blue) and old participant (72y, contours marked in red). Both segmentations are superimposed onto the common population template (middle row). For the connectivity analysis, regions located within the volume defined by the biggest ventricle size across all the participants have been ignored to correct for trivial age-effects in the results of age estimation (i.e., to correct for the effect that older people have bigger ventricle volume). b: Brain hierarchical atlas (BHA) parcellation for young (top) and old (bottom) populations shows the strong correspondence between functional modules (depicted as yellow squares in the matrix diagonal of the functional connectivity matrix, FC ) and structural modules (plotted in the SC matrix). FC and SC matrices are the result of averaging FC and SC individual matrices in two different populations, young (age < 25.1 y, N=54 participants) and old (age > 61.9 y, N=54 participants). Both connectivity FC and SC matrices have been reordered according to the BHA (here represented at the level of M=20 modules). FC is defined by the pairwise Pearson correlation between rs-fMRI time series whilst SC is defined by the streamline counting between region pairs (here binarized just for illustration purposes).
	Figure 2: Schematic representation of brain connectivity descriptors. Left-top: First, we made use of BHA to define different modules resulting from a hierarchical agglomerative clustering. Right-top: The multiscale brain partition shows how modules divide when going down along the tree (here, we only considered the part of the tree that goes from 20 to 120 modules). The gray-colored modules represents the M=20 brain partition. Bottom: For the tree level of M=20 and for each participant, we calculated the structural/functional internal connectivity (green rectangle) and structural/functional external connectivity (red rectangle), by summing respectively the edge weights within and leaving out that module. The same procedure was applied for all the modules in all the 20<=M<=1000 levels of the tree.
	Figure 3. Structure-function correlo-dendrogram (CDG) and structure-function brain maps of age correlation across the multi-scale brain partition. To build structure-function age CDGs, we calculated for each module appearing in the BHA partition (20<=M<=1000) the correlation (and associated p-value) between age participant and FEC, FIC, SEC and SIC. a: Brain regions with external connectivity affected by age. 3D brains show per each of the 2514 regions, the value of maximum correlation achieved by that region among all values in the CDG (illustrated here with an arrow). A zoomed inset of the CDG is reported on the top right, showing how module division affects the correlation with age. b: Similar to panel a, but for age correlation with respect to internal connectivity.
	Figure 4. Functional connectivity modulation along lifespan. SC decreased with age, but FC might either increase (rectangle with solid blue line) or decrease (rectangle with dashed green line), and this occurred for both external connectivity descriptors (panel a) and internal connectivity descriptors (panel b). Notice that the situation of FC increasing and SC decreasing did not exist with regard to internal connectivity. As in figure 3, all the non-zero correlation values plotted here were statistically significant (after multiple-comparison correction).
	Figure 5: Chronological age (ChA) vs Brain-connectome age and its modulation by the amount of physical activity. a: Correlation between ChA and BCA as a function of the number of descriptors (K), when the entire dataset has been used for training (methods). Notice that, the larger number of descriptors, the higher the correlation. However, this strategy is well known to produce overfitting. In blue, we colored results from real data, and in orange, we plotted the results after shuffling the age vector a number of U=100 experiments, which provides the null-distribution (here represented the mean ± SD). b: Mean absolute error (MAE) as a function of K, using 75% of the dataset for training and 25% for testing. The minimum MAE, corresponding to 5.89 years provides optimal solution, achieved when K=38 different descriptors have been incorporated into the maximum likelihood estimator. Similar to panel a, blue and orange represent respectively real and shuffled data after Q=100 experiments. c: For a single estimate (chosen to have a similar MAE as the average one over the 100 experiments), we plot ChA (in years) as a function of the BCA (here, equal to the MLE solution with the best K=38 best connectivity descriptors), which provides a correlation value of 0.95 (p<2E-20). d: Age estimation error (defined as ChA minus BCA) for two groups of participants, one performing high physical activity (PA), and a different one with low PA values. e: Brain maps of the K=38 best descriptors. Color bar indicates age participation index (API), accounting for how many times one brain region is significantly correlated with age in relation to any of the four following categories: SEC, SIC, FEC and FIC. Basal ganglia and thalamus are the brain structures whose connectivity participates most prominently in ageing. f: Basal ganglia and thalamus connect according to a structure-function manner to the inferior and middle frontal gyri together with the orbitofrontal cortex, ie. the so called fronto-striato-thalamic (FST), is the major pathway participating in brain aging. Node size is proportional to the volume size of the region that participates in this network, whereas link thickness is proportional to structure-function correlation values (Table 1).
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