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Language processing relies on a widespread network of brain regions. Univariate post-stroke lesion-behavior mapping is a particularly
potent method to study brain–language relationships. However, it is a concern that this method may overlook structural disconnections
to seemingly spared regions and may fail to adjudicate between regions that subserve different processes but share the same vascular
perfusion bed. For these reasons, more refined structural brain mapping techniques may improve the accuracy of detecting brain
networks supporting language. In this study, we applied a predictive multivariate framework to investigate the relationship between
language deficits in human participants with chronic aphasia and the topological distribution of structural brain damage, defined as
post-stroke necrosis or cortical disconnection. We analyzed lesion maps as well as structural connectome measures of whole-brain neural
network integrity to predict clinically applicable language scores from the Western Aphasia Battery (WAB). Out-of-sample prediction
accuracy was comparable for both types of analyses, which revealed spatially distinct, albeit overlapping, networks of cortical regions
implicated in specific aspects of speech functioning. Importantly, all WAB scores could be predicted at better-than-chance level from the
connections between gray-matter regions spared by the lesion. Connectome-based analysis highlighted the role of connectivity of the
temporoparietal junction as a multimodal area crucial for language tasks. Our results support that connectome-based approaches are an
important complement to necrotic lesion-based approaches and should be used in combination with lesion mapping to fully elucidate
whether structurally damaged or structurally disconnected regions relate to aphasic impairment and its recovery.
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Introduction
A modern approach to neuroscience suggests the understanding
of brain function as a consequence of signal processing within
neuronal networks (Yuste, 2015). More fundamental functions,

such as motor and sensory processing, are localized to relatively
specific brain regions, whereas more complex higher-level
functions are distributed over multimodal cortical networks
(Mesulam, 1990; McIntosh, 1999; Sporns, 2014). This hierarchi-
cal organization allows for integration of information across
specialized brain regions, providing the neuronal basis for sup-
porting a wide repertoire of flexible and complex cognitive be-
haviors (Tononi, 2004; Bressler and Menon, 2010; Park and
Friston, 2013). Notably, the theory of brain organization as a
hierarchy of coordinated networks was developed by Alexander
Luria, who relied on data from lesion studies (Luria, 1966); the
concept was subsequently supported by many neuroimaging
studies (Zeki et al., 1991; McIntosh, 2000; Hagmann et al., 2008;
Bressler and Menon, 2010; Sporns, 2013). This organization sug-
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Significance Statement

We present a novel multivariate approach of predicting post-stroke impairment of speech and language from the integrity of the
connectome. We compare it with multivariate prediction of speech and language scores from lesion maps, using cross-validation
framework and a large (n � 90) database of behavioral and neuroimaging data from individuals with post-stroke aphasia.
Connectome-based analysis was similar to lesion-based analysis in terms of predictive accuracy and provided additional details
about the importance of specific connections (in particular, between parietal and posterior temporal areas) for preserving speech
functions. Our results suggest that multivariate predictive analysis of the connectome is a useful complement to multivariate
lesion analysis, being less dependent on the spatial constraints imposed by underlying vasculature.

6668 • The Journal of Neuroscience, June 22, 2016 • 36(25):6668 – 6679



gests that brain– behavior relationships could be better eluci-
dated by applying multivariate, rather than univariate, analysis
(Schmah et al., 2010; as supported by several fMRI studies: Misaki
et al., 2010; Yourganov et al., 2014). Lesion studies could also
benefit from a multivariate approach (Smith et al., 2013; Mah et
al., 2014; Yourganov et al., 2015; Zhang et al., 2014); instead of
analyzing the effect of lesions in different locations indepen-
dently, as is done in voxelwise lesion symptom mapping (VLSM;
Bates et al., 2003), a multivariate method accounts for the inter-
actions between spatial locations.

Using lesion data to infer the functions of specific brain re-
gions has certain limitations for identifying critical neuroanat-
omy supporting higher cognitive functions. First, lesions
disrupting only a few nodes of the underlying network can lead to
functional interruption; as such, lesion-based analysis might
identify the lesioned nodes as crucial for this interruption, but the
spared nodes are likely to be missed. Second, lesion studies are
typically performed in participants who are stroke survivors, in
whom the anatomical distribution of damage relies on con-
straints imposed by cerebrovascular anatomy. Vascular lesions
typically involve multiple structures within the same vascular
perfusion bed, and this frequent co-occurrence of damaged
regions prevents the statistical discrimination of the essential
structures.

Recently, our group confirmed that cortical disconnection,
i.e., the loss of white-matter fibers supporting a cortical region
apparently intact after the stroke, contributes to the severity of
language impairment (Bonilha et al., 2014). In fact, cortical dis-
connections can lead to deficits that are as severe as those caused
by cortical necrosis (Fridriksson et al., 2007). Importantly, post-
stroke cortical deafferentation can be pervasive and invisible to
conventional structural MRI (Bonilha et al., 2014), such as T1- or
T2-weighted images. Therefore, behaviorally relevant post-
stroke brain damage can be understood as a combination of cor-
tical necrosis and cortical disconnection. The structural human
brain connectome now provides an unprecedented tool to com-
prehensively assess white-matter integrity after stroke. The struc-
tural connectome (Hagmann et al., 2008) is a recent development
relying on magnetic resonance imaging to assess gray-matter
anatomy and axonal connectivity inferred from water diffusion
within white-matter tracts. Connections between an individual’s
brain regions can be represented as a vector and analyzed with
univariate or multivariate methods similarly to lesion maps.

In this study, we aimed to evaluate the cortical regions and
neural networks supporting processing of basic clinical tasks as-
sessing speech and language processing. For this purpose, we
applied support vector regression (SVR; Smola and Schölkopf,
2004) to model the relationship between brain damage (defined
by lesions or integrity of the connectome) and the severity of
behavioral impairment. The accuracy of this model was evaluated
by leave-one-participant-out cross-validation. We investiga-
ted the spatial overlap of the cortical networks revealed by
connectome-based and lesion-based analyses. Moreover, we hy-
pothesized that connectome-based mapping could disclose the
importance of regions with less prevalence of post-necrotic le-
sion, i.e., more likely to be disconnected rather than directly dam-
aged by the stroke.

Materials and Methods
Participants
Participants were recruited from the local community, and the study was
approved by the Institutional Review Board at the University of South
Carolina. Only individuals with aphasia resulting from a single ischemic

or hemorrhagic stroke to the left hemisphere were included. Participants
with lacunar infarcts or with damage that only involved the brainstem or
cerebellum were excluded. The behavioral assessment of the participants
took place between May 2007 and October 2014, and 90 individuals were
included in the final data analyses. The mean � SD sample age was
58.8 � 12.1 years (range, 31– 81 years), and 34 were women. All partici-
pants were at least 6 months after stroke, and the mean � SD time since
stroke onset was 42.8 � 50 months (range, 6 –276 months).

Behavioral evaluation
Aphasic impairment was assessed using the Western Aphasia Battery
(WAB; Kertesz, 1982). Of the 90 participants whose data constituted the
final study sample, the following aphasia types were observed: (1) anomic
(26 participants); (2) Broca’s (30 participants); (3) conduction (nine
participants); (4) global (eight participants); (5) Wernicke’s (five partic-
ipants); and (6) no aphasia (12 participants). In our study, we focused on
four WAB scores that evaluate specific domains of speech and language
(speech fluency, auditory comprehension, speech repetition, and oral
naming) and on the summary score of overall aphasia severity, termed
aphasia quotient (AQ).

Imaging data
MRI scanning was performed within 2 d of behavioral testing of language
abilities. Images were acquired on a Siemens Trio 3T scanner equipped
with a 12-element head coil located at the University of South Carolina.
Three images were collected for each patient.

The first was a T1-weighted image using an MP-RAGE sequence with
1 mm isotropic voxels, a 256 � 256 matrix size, and a 9° flip angle. For the
first 25 individuals, we used a 160 slice sequence with TR of 2250 ms, TI
of 900 ms, and TE of 4.52 ms. For the latter 65 individuals, we used a 192
slice sequence with TR of 2250 ms, TI of 925 ms, and TE of 4.15 with
parallel imaging [generalized autocalibrating partially parallel acquisi-
tions (GRAPPA) of 2; 80 reference lines]. Each of these scans required �7
min to acquire.

The second was a T2-weighted image using a sampling perfection with
application optimized contrasts using a different flip angle evolution
[3D-SPACE (sampling perfection with application optimized contrasts
using different flip angle evolution)] sequence. This 3D TSE (Turbo Spin
Echo) scan uses a TR of 2800 ms, TE of 402 ms, variable flip angle, and
256 � 256 matrix scan with 192 slices (1 mm thick), using parallel imag-
ing (GRAPPA of 2; 120 reference lines).

The third was a diffusion EPI scan that uses 30 directions with b �
1000 s/mm 2 and b � 2000 s/mm 2, TR of 6100 ms, TE of 101 ms, 82 � 82
matrix, 222 � 222 mm FOV, with parallel imaging, GRAPPA of 2 (80
reference lines), 45 contiguous 2.7 mm axial slices, and acquisition time
of 390 s.

Post-stroke gray-matter lesions. Lesions were manually drawn on the
T2-weighted image by a neurologist (L.B.), who was blinded to the par-
ticipant’s language scores at the time of the lesion drawing. The T2 image
was coregistered to the T1 image, and these parameters were used to
reslice the lesion into the native T1 space. The resliced lesion maps were
smoothed with a 3 mm full-width half-maximum Gaussian kernel to
remove jagged edges associated with manual drawing. We then per-
formed enantiomorphic normalization (Nachev et al., 2008) using
SPM12 and MATLAB scripts that we developed as follows. First, a mir-
rored image of the T1 scan (reflected around the midline) was created,
and this mirrored image was coregistered to the native T1 image. We then
created a chimeric image based on the native T1 scan with the lesioned
tissue replaced by tissue from the mirrored scan (using the smoothed
lesion map to modulate this blending, feathering the lesion edge). The
unified segmentation normalization of SPM12 (Ashburner and Friston,
2005) was used to warp this chimeric image to standard space, with the
resulting spatial transform applied to the actual T1 scan and the lesion
map. The normalized lesion map was then binarized, using a 50% prob-
ability threshold. Figure 1 shows the overlap of lesions for our sample of
participants.

Brain parcellation. To reduce the dimensionality of our data, we used a
brain atlas developed by Faria et al. (2012) to divide the gray matter into
118 regions. We used two complimentary ways to characterize brain
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damage: (1) based on lesions; and (2) based on
the connectome. To compute lesion-based
damage, we aligned the anatomical brain atlas
containing the parcellation with each individ-
ual’s T1-weighted images. The T1-weighted
images were segmented into probabilistic gray-
and white-matter maps, and the gray-matter
map was divided into regions according to the
atlas. Then, lesion-based damage was com-
puted as the proportion of intact (i.e., not le-
sioned) voxels per each gray-matter region.
Connectome-based damage was computed as
the number of diffusion tensor imaging (DTI)
tracts that connected each pair of the gray-
matter regions, as described in detail in the
next section. For both types of the analysis, we
excluded subcortical and cerebellar regions.

Structural brain connectome. To align the
diffusion image with the lesion map, the T2-
weighted image (coregistered into the native
T1-weighted image, thus corresponding to
the native T1 space) was linearly normalized into the nondiffusion
image from the diffusion MRI sequence (the B0 image) using FSL
(FMRIB Software Library) FMRIB (Functional MRI of the Brain)
Linear Image Registration Tool (affine registration with 12 parame-
ters, correlation ration cost function and nearest neighbor interpola-
tion). The resulting spatial transform was used to register the
probabilistic maps of white and gray matter in native T1 space and the
stroke lesion into the diffusion MRI space. Because the probabilistic
gray-matter map was parcellated into regions of interest (ROIs) as
described above (see Brain parcellation), this registration step yielded
the spatial normalization of the atlas ROIs to diffusion space.

All subsequent connectome preprocessing steps were performed in
diffusion space. Probabilistic tractography was applied to evaluate pair-
wise gray-matter structural connectivity. Tractography was estimated
through the probabilistic method of FDT (FMRIB Diffusion Toolbox;
Behrens et al., 2007) with FDT BEDPOST being used to build default
distributions of diffusion parameters at each voxel, followed by probabi-
listic tractography using FDT probtrackX (parameters: 5000 individual
pathways drawn through the probability distributions on principle fiber
direction, curvature threshold set at 0.2, 200 maximum steps, step length
of 0.5 mm, and distance correction). The probabilistic white-matter map
excluding the stroke lesion was used as the waypoint mask. As explained
above, the probabilistic white-matter map was obtained from T1-
weighted images and spatially normalized into diffusion space. The con-
nectivity between ROIs was defined as the number of streamlines arriving
in one region when another ROI was seeded and vice versa. Specifically,
the following process was iteratively performed for all ROIs: the seed
space was defined as ROI i, with the probabilistic white-matter map set as
the waypoint mask. This process resulted in one three-dimensional im-
age in diffusion space, in which each voxel represented the number of
connectivity streamlines of ROI i. The probabilistic gray-matter map
divided into ROIs was then overlaid onto this image, and the number of
connectivity streamlines was counted for every other ROI besides i. Thus,
the weighted connectivity between the ith and jth regions was defined as
the number of probabilistic streamlines arriving at jth region when the
ith region was seeded, averaged with the number of probabilistic stream-
lines arriving at the ith region when the jth region was seeded. The cal-
culation of the probabilistic streamlines was corrected based on the
distance traveled by the streamline connecting ith and jth regions (“dis-
tance correction” built into probtrackX). To compensate for the unequal
size of gray-matter regions, the number of streamlines connecting each
pair of regions was divided by the sum of the volume of areas of these
regions. Because we did not track the fibers within the lesion site, the
entries of the connectome matrices that corresponded to the connections
stemming from completely lesioned brain regions were set to zero (rather
than being treated as missing data).

SVR
To model the relationship between the brain damage and speech impair-
ment, we used SVR with the linear kernel. The estimated linear model is

y � w1x1 � w2x2 � . . . � wNxN � c. (1)

Here, y is the WAB subscore, each xi is a feature, which is either the
proportion of intact voxels in the ith gray-matter region (for lesion-based
symptom mapping) or the number of streamlines in the ith link of the
connectome (for connectome-based symptom mapping), N is the num-
ber of features, and c is the constant offset term.

For both lesion-based and connectome-based analyses, we preselected
a set of features to exclude those that were considered too noisy or unin-
formative. In the first case, we only considered gray-matter regions that
were damaged in at least 4 of 90 participants; there were 42 such regions
(Table 1). In the second case, we only considered the left-hemisphere
tracts whose right-hemisphere homologs were reproducible across par-
ticipants. We subsequently ordered these links based on their weighted
dispersion across subjects, selecting the highest reproducible 10%. This
process yielded 84 connections for additional analysis. These connec-
tions are displayed on Figure 2; the names of the regions that are con-
nected by the links are provided in Table 2.

The accuracy of the model was evaluated using a leave-one-
participant-out cross-validation procedure. One participant was set

Figure 1. Overlap of lesions in our sample of participants. The color indicates the number of participants having a lesion at a
given location. The upper boundary (n � 72) of the color scale represents the highest lesion overlap among the 90 participants
included in the final data analyses.

Table 1. Gray-matter regions used in lesion-based analysis

Superior frontal gyrus (posterior segment) Inferior temporal gyrus
Superior frontal gyrus (prefrontal cortex) Parahippocampal gyrus
Superior frontal gyrus (frontal pole) Entorhinal area
Middle frontal gyrus (posterior segment) Fusiform gyrus
Middle frontal gyrus (dorsal prefrontal cortex) Superior occipital gyrus
Inferior frontal gyrus pars opercularis Middle occipital gyrus
Inferior frontal gyrus pars orbitalis Inferior occipital gyrus
Inferior frontal gyrus pars triangularis Cuneus
Lateral fronto-orbital gyrus Lingual gyrus
Middle fronto-orbital gyrus Rostral anterior cingulate gyrus
Gyrus rectus Dorsal anterior cingulate gyrus
Postcentral gyrus Posterior cingulate gyrus
Precentral gyrus Insula
Superior parietal gyrus Amygdala
Supramarginal gyrus Hippocampus
Angular gyrus Cingulum (cingulate gyrus)
Precuneus Cingulum (hippocampus)
Superior temporal gyrus Posterior insula
Pole of superior temporal gyrus Posterior superior temporal gyrus
Middle temporal gyrus Posterior middle temporal gyrus
Pole of middle temporal gyrus Posterior inferior temporal gyrus
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aside, and the brain damage from the remaining 89 participants was used
to train the model (i.e., to estimate the coefficients wi and the offset c in
Eq. 1). Then, the model was tested by computing the WAB score for the
left-out patient. The procedure was iterated so all of the 90 participants
were, in turn, left out; this was repeated for two types of brain damage
(lesion- and connectome-based) and for five WAB scores. Detailed de-
scriptions of training and testing are given below.

Training the SVR model. During training, the set of 89 participants was
used to compute the parameters of the linear model given in Equation 1,
that is, the weights for each feature and the offset term. The first step was
to scale the features to the [0 . . . 1] range, by dividing them by the global
maximum value of all features in the training set. The next step was
feature selection: we selected the features in which the damage was cor-
related (across the 89 participants) with the particular WAB score that we
were estimating. The threshold for significance of correlation was 0.05
with Bonferroni’s correction for multiple comparisons; the features that
passed the threshold were retained for additional analysis.

The next step was the actual estimation of the model parameters; this
was done using the LIBSVM (Library for Support Vector Machines)
MATLAB library (Chang and Lin, 2011), which computes the weights wi

and the offset c (see Eq. 1) using the scores and damage data from the
training set of participants. We performed two additional steps to im-
prove the predictive performance of SVR. First, we ensured that the range
of the SVM output was not too compressed. To ensure that the range of
predicted WAB scores matched the range of the observed scores, we
predicted the WAB scores of our training set of participants and com-
pared the ranges of the predicted and observed training scores. We as-
sumed that the relationship between the observed score yi and the
predicted score ŷi was linear:

y1 � aŷi � b. (2)

The values of a and b were selected so that the line passed through the
points (ŷmin, ymin) and (ŷmax, ymax).

After determining a and b, we inspected the feature weights to ensure
that they were positive. Our features measured the intactness of the gray
or white matter; therefore, we had an a priori hypothesis that the feature
weights would be non-negative, that is, if a value of any isolated feature is
increased, we expect the WAB score to increase rather to decrease (higher
WAB scores correspond to better preservation of function). Any negative
feature weight was likely a product of overfitting (an attempt to model
the noise that was specific to our training set); all such negative weights
were changed to zeros.

Testing the SVR model. During testing, we scaled the features of the
left-out patient (that is, divided them by the maximum value of the
training set features), selected the features that were determined as pre-
dictive during training, and then, using Equation 1, computed the WAB

score for the left-out patient. The output was then rescaled using the
coefficients a and b according to Equation 2; note that these coefficients
were computed on the training set without using any information about
the left-out patient, therefore satisfying the requirement that no infor-
mation from the test set could be used during training. The predicted
WAB score was then clipped to the [0 . . . 10] range. When we were
predicting speech fluency scores, the predicted score was also rounded to
a nearest integer.

By iterating through all 90 participants, we obtained a set of predicted
WAB scores. The accuracy of our prediction was evaluated by computing
Pearson’s correlation coefficient between the actual and predicted WAB
scores.

Visualization of feature weights. The feature weights in the linear SVR
model (specified as w1, w2, . . . ,wN in Eq. 1) characterize the importance
of each feature, relative to other features, for predicting the score. For
visualization, we trained the linear SVR model on all 90 available partic-
ipants to achieve as complete representation of our dataset as possible.
The feature weights were then divided by the SD of feature weights and
projected onto a standard brain template using BrainNet software (Xia et
al., 2013).

Prediction from lesion size
In addition to lesion-based and connectome-based predictions, we pre-
dicted the behavioral scores from the size of the lesion (i.e., the number of
voxels within the lesion map in spatially normalized brains). Prediction
was performed using the leave-one-patient-out framework, with lesion
size serving as the only predictor. Instead of using SVR (which requires
more than one predictor), we used simple linear regression. At each
iteration, the behavioral score for the left-out patient was estimated from
the linear regression model that was computed using the remaining
patients.

Results
The accuracy of predicting WAB scores from the lesion size was
significantly better than chance, as demonstrated in Table 3. This
table lists Pearson’s correlation coefficient between actual and
predicted WAB scores (fluency, auditory comprehension, repe-
tition, naming, and AQ) and the associated p value.

Because the lesion affects the gray matter and the connectome,
the predictors in lesion-based analysis were correlated with the
predictors in connectome-based analysis. The table of correla-
tions is shown on Figure 3 (abbreviations are defined in Table 6;
additional abbreviations used in Fig. 3: SFG, superior frontal
gyrus; PFC, prefrontal cortex; MFOG, middle fronto-orbital
gyrus; RG, gyrus rectus; SPG, superior parietal gyrus; PcCu, pre-
cuneus; ENT, entorhinal area; FuG, fusiform gyrus; SOG/IOG,
superior/inferior occipital gyrus; Cu, cuneus; LG, lingual gyrus;
ACC/PCC, anterior/posterior cingulate cortex; Hippo, hip-
pocampus; CGC, cingulate gyrus; CGH, hippocampal part of the
cingulate gyrus). Tables 4 and 5 summarize the accuracy of pre-
dicting WAB scores from lesion data (Table 4) and from connec-
tome data (Table 5). These tables report the accuracy of
prediction and the number of features with nonzero weights (the
remaining features had zero weights and therefore did not par-
ticipate in predicting the score). The p values are uncorrected for
multiple comparisons; however, all correlations are significant
(p � 0.000005 for each of the eight predictions). Figures 4 – 6
display the corresponding scatter plots.

For both types of analysis (lesion- and connectome-based),
prediction of speech fluency scores was the most accurate, per-
haps because of the fact that the fluency scores were whole num-
bers whereas the other three scores were fractional. For three
scores (fluency, repetition, and naming), prediction was more
accurate for lesion-based analysis; auditory comprehension
scores were more accurately predicted from the connectome.

Figure 2. Left-hemisphere white-matter links that were used in connectome-based analy-
sis. These links were selected based on the high reproducibility of their right-hemisphere
homologs.
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However, when the correlation coefficients were transformed to
Z values using Fisher’s r-to-Z transform, the difference between
lesion- and connectome-based predictions was not significant
(p � 0.072 for the AQ score; p � 0.15 for the remaining four
scores). Lesion-based analysis tended to overestimate the
WAB scores, e.g., the predicted scores were better than the actual
scores. In contrast, connectome-based analysis tended to under-
estimate the scores. When Tables 3–5 are compared, we can see
that lesion size is approximately as predictive as ROI-specific
damage and connectome integrity (there was no significant dif-
ference in r-to-Z transformed correlations; p � 0.15); this is ex-
pected given the correlation between overall lesion size and
amount of damage in some regions (Fig. 3).

The features that drove the prediction (see Materials and
Methods, Visualization of feature weights) are visualized in
Figures 7–9; only the features with loadings �1 are displayed.
Table 6 lists the brain regions that correspond to the labels on
these figures. For lesion-based analysis, the most important re-
gions for predicting fluency scores were the precentral gyrus,
opercular part of inferior frontal gyrus, and the posterior part of
the superior temporal gyrus (PSTG); for predicting auditory
comprehension scores, the PSTG, the triangular part of inferior
frontal gyrus, the pole and the posterior part of the middle tem-
poral gyrus, the amygdala, and the dorsal part of the middle
frontal gyrus; for predicting speech repetition scores, the poste-
rior part of the superior and the middle temporal gyri; and, fi-
nally, for predicting naming scores, the PSTG, the pole of the
superior and middle temporal gyri, and the triangular part of the
inferior frontal gyrus. For the connectome-based analysis, the
most important connection for predicting speech fluency scores
was between the precentral gyrus and pars opercularis; for pre-
dicting auditory comprehension scores, the connection between
the insula and pars orbitalis; for predicting repetition scores, the
connections between the angular gyrus and the PSTG and be-

Table 2. White-matter connections used in connectome-based analysis

Superior frontal gyrus (posterior segment)7 superior frontal gyrus (prefrontal cortex) Superioroccipitalgyrus7 cuneus
Superior frontal gyrus (posterior segment)7 middle frontal gyrus (posterior segment) Middle occipital gyrus7 cuneus
Superior frontal gyrus (prefrontal cortex)7 middle frontal gyrus (dorsal prefrontal cortex) Parahippocampal gyrus7 lingual gyrus
Middle frontal gyrus (posterior segment)7 middle frontal gyrus (dorsal prefrontal cortex) Fusiform gyrus7 lingual gyrus
Middle frontal gyrus (posterior segment)7 inferior frontal gyrus pars opercularis Middle occipital gyrus7 lingual gyrus
Middle frontal gyrus (dorsal prefrontal cortex)7 inferior frontal gyrus pars orbitralis Superior frontal gyrus (prefrontal cortex)7 rostral anterior cingulate gyrus
Middle frontal gyrus (posterior segment)7 inferior frontal gyrus pars triangularis Superior frontal gyrus (posterior segment)7 dorsal ant. cingulate gyrus
Middle frontal gyrus (dorsal prefrontal cortex)7 inferior frontal gyrus pars triangularis Superior frontal gyrus (prefrontal cortex)7 dorsal anterior cingulate gyrus
Inferior frontal gyrus pars opercularis7 inferior frontal gyrus pars triangularis Postcentral gyrus7 dorsal anterior cingulate gyrus
Inferior frontal gyrus pars orbitralis7 inferior frontal gyrus pars triangularis Precentral gyrus7 dorsal anterior cingulate gyrus
Middle frontal gyrus (dorsal prefrontal cortex)7 lateral fronto-orbital gyrus Superior parietal gyrus7 dorsal anterior cingulate gyrus
Inferior frontal gyrus pars orbitralis7 lateral fronto-orbital gyrus Superior parietal gyrus7 posterior cingulate gyrus
Superior frontal gyrus (prefrontal cortex)7 gyrus rectus Precuneus7 posterior cingulate gyrus
Superior frontal gyrus (posterior segment)7 postcentral gyrus Superior occipital gyrus7 posterior cingulate gyrus
Superior frontal gyrus (posterior segment)7 precentral gyrus Middle occipital gyrus7 posterior cingulate gyrus
Middle frontal gyrus (posterior segment)7 precentral gyrus Lingual gyrus7 posterior cingulate gyrus
Inferior frontal gyrus pars opercularis7 precentral gyrus Dorsal anterior cingulate gyrus7 posterior cingulate gyrus
Postcentral gyrus7 precentral gyrus Inferior frontal gyrus pars opercularis7 insula
Postcentral gyrus7 Superior parietal gyrus Inferior frontal gyrus pars orbitralis7 insula
Precentral gyrus7 Superior parietal gyrus Inferior frontal gyrus pars triangularis7 insula
Postcentral gyrus7 supramarginal gyrus Lateral fronto-orbital gyrus7 insula
Precentral gyrus7 supramarginal gyrus Superior temporal gyrus7 amygdala
Postcentral gyrus7 angular gyrus Middle temporal gyrus7 amygdala
Precentral gyrus7 angular gyrus Inferior temporal gyrus7 amygdala
Superior parietal gyrus7 angular gyrus Parahippocampal gyrus7 amygdala
Supramarginal gyrus7 angular gyrus Superior temporal gyrus7 hippocampus
Postcentral gyrus7 precuneus Inferior temporal gyrus7 hippocampus
Superior parietal gyrus7 precuneus Superior parietal gyrus7 posterior superior temporal gyrus
Superior temporal gyrus7 middle temporal gyrus Supramarginal gyrus7 posterior superior temporal gyrus
Superior temporal gyrus7 inferior temporal gyrus Angular gyrus7 posterior superior temporal gyrus
Middle temporal gyrus7 inferior temporal gyrus Superior temporal gyrus7 posterior superior temporal gyrus
Inferior temporal gyrus7 parahippocampal gyrus Superior parietal gyrus7 posterior middle temporal gyrus
Inferior temporal gyrus7 fusiform gyrus Supramarginal gyrus7 posterior middle temporal gyrus
Parahippocampal gyrus7 fusiform gyrus Angular gyrus7 posterior middle temporal gyrus
Superior parietal gyrus7 superior occipital gyrus Superior temporal gyrus7 posterior middle temporal gyrus
Precuneus7 superior occipital gyrus Middle temporal gyrus7 posterior middle temporal gyrus
Superior parietal gyrus7 middle occipital gyrus Inferior temporal gyrus7 posterior middle temporal gyrus
Angular gyrus7 middle occipital gyrus Middle occipital gyrus7 posterior middle temporal gyrus
Fusiform gyrus7 middle occipital gyrus Inferior occipital gyrus7 posterior middle temporal gyrus
Superior occipital gyrus7 middle occipital gyrus Posterior superior temporal gyrus7 posterior middle temporal gyrus
Fusiform gyrus7 inferior occipital gyrus Fusiform gyrus7 posterior inferior temporal gyrus
Middle occipital gyrus7 inferior occipital gyrus Posterior middle temporal gyrus7 posterior inferior temporal gyrus

Table 3. Accuracy of predicting WAB scores from lesion size

WAB score Prediction accuracy

Fluency 0.6971 ( p � 2.32427e-14)
Auditory comprehension 0.5698 ( p � 4.60602e-09)
Repetition 0.5924 ( p � 7.69624e-10)
Naming 0.5712 ( p � 4.11218e-09)
AQ 0.6342 ( p � 1.93589e-11)
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tween the angular and the middle occipital gyri; and, finally, for
predicting naming scores, the links that connect the angular
gyrus to the PSTG, the postcentral gyrus, and the PSTG, as well as
the connection between the middle and the inferior temporal
gyri.

There was an overall agreement between lesion-based and
connectome-based analyses in identifying the parts of the brain
relevant for speech modalities measured by WAB scores. For ex-
ample, both types of analysis identified the PSTG and the con-
nections stemming from it, to have an important contribution

for predicting all five WAB scores. Also, precentral gyrus and pars
opercularis were identified as important contributors to fluent
speech production by both lesion- and connectome-based anal-
yses. As another example, the link between the angular gyrus and
PSTG was highly relevant for prediction of repetition and naming
scores; both areas are likewise relevant in lesion-based analysis.
Conversely, some features were detected by one type of the anal-
ysis but not the other. One such example is the polar regions of
the temporal lobe (which are important contributors in lesion-
based prediction of auditory comprehension, repetition, and

Figure 3. Correlation of features used in lesion-based and connectome-based analysis. The top row displays the correlation between the ROI damage and overall lesion size.

Table 4. Accuracy of predicting WAB scores from lesions

WAB score

Correlation of
predicted and
actual scores P value

Number of
predictive regions
(of 42)

Speech fluency 0.7054 8.32e-15 20
Auditory comprehension 0.4560 6.28e-06 16
Speech repetition 0.6189 7.92e-11 18
Naming 0.5761 2.84e-09 15
AQ 0.6936 3.5e-14 22

Table 5. Accuracy of predicting WAB scores from connectomes

WAB score

Correlation of
predicted and
actual scores P value

Number of
predictive links
(of 84)

Speech fluency 0.6332 2.13e-11 14
Auditory comprehension 0.5233 1.21e-07 7
Speech repetition 0.5171 1.81e-07 8
Naming 0.5341 5.90e-08 9
AQ 0.5603 9.3e-09 11
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naming scores). Moreover, the frontal regions were predictive of
naming scores based on their lesions but not on their connectiv-
ity; the contribution of parietal regions to auditory comprehen-
sion prediction was detected by connectivity-based analysis but
not by lesion-based analysis; the connection between pars or-
bitalis and the dorsal part of middle frontal gyrus was strongly
predictive of speech repetition scores, but damage to those re-
gions was not predictive.

Overall, our results demonstrate that lesion-based and
connectome-based predictions are comparable in terms of accu-
racy but not altogether similar in terms of the spatial features that
drive the predictions. To further evaluate the complementarity of
these two analyses, we predicted the WAB scores from the com-
bination of lesion-based and connectome-based features (i.e., re-
gional damage and probabilistic fiber counts). Because the
regional damage is measured on scale a from zero (no damage) to
one (region completely destroyed by lesion), we scaled the con-
nectome data to the same range, dividing all values by the largest
connectome value across all subjects and connections. As shown
in Table 7, the accuracy of predictions is similar to the results
obtained from the lesion maps (Table 4) and from the connec-
tomes (Table 5).

To further investigate the question of whether the connec-
tome contained information not captured by lesion maps, we
performed additional analyses: using the same leave-one-patient-

out framework, we identified the gray-matter regions that were
�5% damaged in the left-out patient and removed the connec-
tions stemming from these regions from the training set. There-
fore, the SVR model was trained on the connections between
relatively intact cortical regions. Table 8 displays the resulting
prediction accuracy, computed as Pearson’s correlation coeffi-
cient between the actual and predicted WAB scores. For all WAB
scores except for AQ, the correlation between the actual and pre-
dicted WAB scores was significantly better than chance.

Discussion
Converging evidence from lesion and functional neuroimaging
studies has demonstrated that the processes supporting speech
production and comprehension recruit a widespread network of
brain regions, although the spatial extent of such recruitment is a
subject of ongoing debate (Dronkers et al., 2004; Hickok and
Poeppel, 2007; Henseler et al., 2014). A stroke can disrupt the
functioning of this network in several ways. The lesion might
destroy a gray-matter region that serves as a node of the network;
it can also damage a white-matter tract and therefore disrupt the
communication between network nodes that have been spared by
the lesion (Geschwind, 1965). In addition, a white-matter tract
can be damaged by post-stroke Wallerian degeneration (Thom-
alla et al., 2005). This focal damage might affect the communica-
tion between the parts of the network that are located far from the

Figure 4. Scatter plots of actual versus predicted WAB scores (each dot representing a patient) for lesion-based analysis, with the corresponding linear regression line. Pearson’s correlations
coefficients between actual and predicted scores are specified above each plot.
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lesion, e.g., in the contralesional hemisphere (Crofts et al., 2011;
Gratton et al., 2012).

In the current study, the neural basis of behavioral impair-
ment was explored in two separate analyses. First, we predicted

the degree of speech impairment based on the extent of primary
ischemic damage to a set of predefined gray-matter regions. Sec-
ond, we computed the connectome of the post-stroke brain by
evaluating the integrity of white-matter tracts and used the con-

Figure 5. Scatter plots of actual versus predicted WAB scores (each dot representing a patient) for connectome-based analysis, with the corresponding linear regression line. Pearson’s
correlations coefficients between actual and predicted scores are specified above each plot.

Figure 6. Scatter plots of actual versus predicted AQ scores obtained with lesion-based (left) and connectome-based (right) predictions.
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nectome to predict speech impairment. Both types of analysis
were approximately equivalent in terms of prediction accuracy,
and, furthermore, prediction of behavioral impairment from
overall lesion size yielded comparable levels of accuracy. This is
expected because damage in some regions highly correlates with
lesion size and consistent with previous reports of lesion size
being a good predictor of behavioral impairment (Wu et al.,
2015). However, our region-based multivariate analysis, in addi-
tion to predicting behavioral impairment, allowed us to identify
the gray-matter regions and (separately) the white-matter tracts
in which integrity was important for preserving a particular
speech function. In addition, we predicted the same behavioral
scores using the combination of lesion-based and connectome-
based data as inputs. Prediction from the combination of two
modalities was not, in general, more accurate than prediction
from one modality; this could be because the number of inputs in
a multivariate analysis led to an increase in model complexity
(that is, the number of model parameters that need to be esti-
mated using the same amount of training data), which could
outweigh the advantage of complementary information provided
by the two modalities.

Although the two analyses are complementary and based
on data from different neuroimaging modalities (structural
MRI and DTI), they are not fully independent, because the
brain damage at the lesion locus is likely to involve both gray
and white matter. Because the lesion site was masked during

probabilistic tractography, it is not surprising that the amount
of ischemic damage in the region was correlated with the
strength of probabilistic connections stemming from that re-
gion (Fig. 3). However, connectome-based analysis provided
an additional degree of spatial sensitivity: identification of
particular connections in a damaged region that were deemed
relevant for a given linguistic function. Furthermore,
connectome-based predictions were better than chance even if
the connections involving lesioned regions were excluded
from the analysis; this suggests that connectome-based analy-
sis can potentially overcome the spatial bias toward areas that
have a higher chance of being lesioned because of their posi-
tion within the vascular bed. For example, the position of
insula relative to the middle cerebral artery makes it particu-
larly vulnerable to ischemic stroke; this makes insular regions
highly significant predictors of speech impairment in voxelwise
symptom mapping analysis (Dronkers, 1996), but this significance
could be driven by the vulnerability of insula rather than by its role in
speech production (Hillis et al., 2004).

Because of the similarity between post-stroke regional damage
and connectome integrity, it is not surprising to see a high de-
gree of correspondence in feature maps computed for the two
types of analyses (Figs. 7–9). However, the connectome-based
analysis provides some additional information about the cortical
networks that support language processing. For example,
connectome-based analysis identifies the connections within pa-

Figure 7. Loadings on the features, reflecting their importance in predicting speech fluency scores (top row) and auditory comprehension scores (bottom row). In the left column, features are
gray-matter cortical regions; in the right column, features are white-matter tracts. For abbreviations, see Table 6.
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rietal and within orbito-frontal regions as implicated in auditory
comprehension and speech repetition, respectively; damage to
these regions was not found to be predictive in lesion-based anal-
ysis. In addition, there are some regions in which the damage is
predictive of language impairment, and connectome-based anal-
ysis identifies which particular links stemming from that region
are involved. For instance, lesion-based analysis consistently
identifies the PSTG as a highly predictive region; from the

connectome-based analysis, we know that it is the link from the
PSTG to the angular gyrus that is most implicated in the four
language modalities that were measured in our study. The PSTG
and angular gyrus lie adjacent to each other on the two sides of the
junction of the temporal and parietal lobes; this junction has been
described as the interface between the motor and the sensory
systems, which translates auditory information (e.g., syllables)
into motor information (commands to the vocal tract) and vice

Figure 8. Loadings on the features, reflecting their importance in predicting speech repetition scores (top row) and naming scores (bottom row). In the left column, features are gray-matter
cortical regions; in the right column, features are white-matter tracts. For abbreviations, see Table 6.

Figure 9. Loadings on the features for AQ prediction (lesion-based, left; connectome-based, right). For abbreviations, see Table 6.
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versa (Hickok et al., 2003, 2011). The angular gyrus was found to
be more predictive when its connectivity (rather than frank dam-
age) was analyzed. This region is one of the major cortical hubs
implicated in a multitude of functions, including speech and lan-
guage (Seghier, 2013). The connection between angular and
middle occipital gyri, which was strongly predictive of speech
repetition and naming performance in our study, could be a part
of the projections from the angular to the parahippocampal gyri,
which can pass through the occipital lobe (Rushworth et al.,
2006). Overall, our findings are mostly consistent with previous
VLSM (Baldo et al., 2006, 2013; Turken and Dronkers, 2011;
Geva et al., 2012; Schwartz, 2014; Weiss et al., 2016) and fMRI
(Liljeström et al., 2008; Saur et al., 2008; Meinzer et al., 2009)
studies of the neural correlates of fluency, comprehension, repe-
tition, and naming tasks.

This is the first study to assess the whole-brain connectome as
a tool to map the relationship between aphasia and white-matter
connectivity. Connectomes were constructed using probabilistic
tractography; this method, despite its high computational com-

plexity, is particularly sensitive in tracking nondominant fiber
populations (Behrens et al., 2007). Our predictive analysis was
performed on probabilistic fiber count between pairs of regions,
which could be a noisy measure of connectivity; an interesting direc-
tion for future research is prediction of behavioral impairment from
the graph-theoretical measures of binarized (thresholded) connec-
tomes (Rubinov and Sporns, 2010). We opted to include only corti-
cal regions to permit a more equivalent comparison with lesion data,
because the inclusion of subcortical links would greatly expand the
number of inputs into the multivariate model and potentially de-
crease its accuracy. Unquestionably, basal nuclei connectivity is im-
portant for language and aphasia, and its investigation constitutes an
important future use of connectome-based methods. Another pos-
sible limitation is our feature-selecting procedure; by discarding the
features that were not highly correlated with a given behavioral
score, we could potentially discard the features that might be predic-
tive when used in combination with other features. Using alternative
methods of feature selection (e.g., based on principal components of
the data matrix; Yourganov et al., 2014) is a promising direction for
future research.

An additional limitation of our connectome-based analysis is
our constraint on the inclusion of white-matter connections.
There are 1378 possible connections between 53 left-hemisphere
regions, and we retained only 84 for our analysis (only the con-
nections with highly reproducible contralesional homologs were
retained). As shown on Figure 2, these connections are mostly
between adjacent gray-matter regions. This emphasis on short-
range tracts was a factor in the similarity of the connectome-
based predictions to lesion-based predictions. Many important
white-matter tracts were not included in our connectome-based
analysis because their homologs could not be traced reliably; of
particular importance was the omission of the uncinate fascicu-
lus, which is highly important for naming (Papagno, 2011). Like-
wise, direct links between inferior frontal areas and the areas in
the neighborhood of the temporoparietal junction were not in-
cluded; these links form an important part of the arcuate fascic-
ulus, and it has been known since the days of Karl Wernicke that
damage to these connections is implicated in problems with repeti-
tion (Geschwind, 1965). Perhaps because of these omissions, the
connectome-based analysis was less accurate than lesion-based anal-
ysis in predicting the naming and speech repetition scores.

Despite this drawback, the connectome-based analysis was
only slightly less accurate than lesion-based analysis in predicting
speech fluency, speech repetition, and naming scores and more
accurate in predicting auditory comprehension scores. It also
identified the important connections between the regions that
were missed by lesion-based analysis. In addition, when we ran
the connectome-based analysis only on connections between in-
tact regions that were outside of the lesion loci, we could still
predict the WAB subscores to some extent (Table 8). This shows
that the connectome-based analysis uses the information that is
not captured by lesion maps; because the spatial occurrence of the
lesions is strongly tied to the brain vasculature, the analysis of the
connectome can potentially overcome the vasculature-imposed
limitations of lesion-based analysis and provide a fuller picture of
brain– behavior relationship.
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