Mapping the Human Brain

David C. Van Essen Washington University in St. Louis

Capitol Hill Luncheon June 5, 2013

Supported by the NIH Neuroscience Blueprint

Big Questions

- What makes us think, love, talk, and 'tick'?
- Why do each of us behave so differently?
- What goes wrong in devastating brain disorders? Alzheimer's, autism, schizophrenia,.....

It's the connections – the wiring of the brain! Physical wires (axons, dendrites) Strength of connections: "Functional connectivity"

Human Brain Parts List

Whole brain: 1500g; 86 billion neurons¹

Cerebral cortex: ~80% of brain mass 16 billion neurons (~20%) 150 trillion synapses

100,000 miles of axons in white matter

Cerebellum: 10% of brain mass 69 billion neurons (80%)

How do we untangle the wiring of the brain??

© 2010 Scientific American T. Insel (April 2010)

- Focus on human brain
- Invaluable information from animal models

A view of primate cortex in 1991

(Felleman & Van Essen, 1991)

A binary connectivity matrix:

- Dozens of visual cortical areas in the macaque;
- Hundreds of connections (pathways)
- Human brain circuits: <u>very</u> little known in 1991
- 1992–2012: an explosion of brain imaging and analysis methods!

What's a connectome?

A "comprehensive" map of neuronal connections

Macro-connectome whole-brain, long-distance

Resolution: 1 – 2 mm 'voxels'

Micro-connectome (every synapse, neuron, dendrite)

Volume reconstructed: <<1 mm³ (to date)

The Human Connectome Project: A systematic study of the macro-connectome in 1,200 healthy adults

HUMAN Connectome PROJECT

Mapping structural and functional connections in the human brain

The "WU-Minn" HCP consortium

10 institutions:

Washington University University of Minnesota Oxford University

99 on HCP team (June, 2013)

Saint Louis University University d'Annunzio Indiana University, Warwick University Ernst Strungmann Institute (Frankfurt) Radboud University (Nijmegen) Duke University

HCP objectives (2010 – 2015)

Improve the methods of data acquisition and analysis 2010 - 2012 and continuing

Study brain circuits in healthy adults (2012 - 2015)

- Twins and their non-twin siblings (1,200 total)
- Relate brain circuits to behavior

Share the data with the scientific community
Promote discoveries, accelerate progress

Structural Magnetic Resonance Imaging (MRI)

High resolution scans (0.7 mm voxels)

Cerebral cortex gray matter

> **Subcortical** white matter "myelin" = insulation for faster signaling

Human cortical convolutions

- Surface models capture the shape of cortical convolutions
- Surface inflation 'smooths out the wrinkles'
- Depth maps reflect 3D shape features: "cortical brainprints"

Myelin maps in cerebral cortex

Glasser & Van Essen (2011)

Individual variability in cortical convolutions

Two pairs of identical twins Which are the twin pairs?

Myelin maps also vary, even in twins

Cortical folding is highly variable, but also heritable

functional MRI (fMRI)

fMRI signal reflects brain activity (over past several seconds)

Task-fMRI: compare fMRI signals during a task to a baseline (at rest, or a 'simpler' task)

Differences in activity reflect functional specialization

Task-fMRI activations

Activation in left hemisphere, central sulcus

Task-fMRI activations

'social interaction' vs. random movement

A complex brain network engaged in social cognition!

Conventional fMRI

Whole Brain: several seconds to scan

"Multi-band" Brain Imaging

- Excite *multiple* slices simultaneously
- Each "coil" around the head picks up signals from nearby brain slices
- Computer algorithms decipher the original pattern

• Yields more data & better data!

Functional Connectivity

The brain is very active when 'doing nothing'

"Resting-state" fMRI reveals functional connectivity (regions that are active together are 'wired together')

Anatomical substrate for fMRI visualization

One moment in one subject's life in the MRI scanner

Glasser et al. (HCP unpublished)

10 seconds 'at rest' in scanner

- Outstanding data quality!!
- Viewing the brain at rest, but in action

Functional connectivity from resting-state fMRI

fMRI time course (locations 1, 2)

Functional connectivity matrix ('dense connectome')

Functional connectivity map (location 2)

Functional connectivity map (location 1)

High

Correlation

OW

Comparing functional connectivity and myelin maps

Myelin and functional connectivity hotspots colocalize

Glasser et al. (HCP unpublished)

Structural Connectivity

Fiber bundles in white matter (brain dissection)

"Diffusion imaging" reveals fiber trajectories in white matter

7T DWI Data (CMRR) Thompson, P. (UCLA), Lenglet C., Sapiro, G. et al. CMRR

Visualizing trajectories through white matter

"Seed" location (left hemisphere)

Trajectory through white matter

Oxford: Jbabdi, Sotiropoulos WashU: Harwell, Coalson, Glasser

Sharing HCP Data

March, 2013: First quarterly data release (68 subjects) June 11, 2013: Second quarterly release (another 68 subjects)

- Unprocessed and processed data available
- Enthusiastic response from scientific community

https://db.humanconnectome.org/

Concluding Comments

- Understanding human brain circuitry in health and disease: a grand challenge for the 21st century!
- The Human Connectome Project will elucidate brain connectivity and its variability in healthy adults.
- A 'complete' connectome (macro- plus micro-) is well outside our grasp
- Future studies of diseases, development, and aging will aid in diagnosis and treatment.
- Further methodological improvements are needed!

Revolutions in Cartography EARTH **BRAIN**

Classical maps

Satellite imagery

Book atlases

1960

Classical maps

Talairach atlas

~2005: MRI; volumes + surfaces

Washington University

2011 and beyond Connectomics

